Module « scipy.sparse.linalg »
Signature de la fonction svds
def svds(A, k=6, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack')
Description
svds.__doc__
Compute the largest or smallest k singular values/vectors for a sparse matrix. The order of the singular values is not guaranteed.
Parameters
----------
A : {sparse matrix, LinearOperator}
Array to compute the SVD on, of shape (M, N)
k : int, optional
Number of singular values and vectors to compute.
Must be 1 <= k < min(A.shape).
ncv : int, optional
The number of Lanczos vectors generated
ncv must be greater than k+1 and smaller than n;
it is recommended that ncv > 2*k
Default: ``min(n, max(2*k + 1, 20))``
tol : float, optional
Tolerance for singular values. Zero (default) means machine precision.
which : str, ['LM' | 'SM'], optional
Which `k` singular values to find:
- 'LM' : largest singular values
- 'SM' : smallest singular values
.. versionadded:: 0.12.0
v0 : ndarray, optional
Starting vector for iteration, of length min(A.shape). Should be an
(approximate) left singular vector if N > M and a right singular
vector otherwise.
Default: random
.. versionadded:: 0.12.0
maxiter : int, optional
Maximum number of iterations.
.. versionadded:: 0.12.0
return_singular_vectors : bool or str, optional
- True: return singular vectors (True) in addition to singular values.
.. versionadded:: 0.12.0
- "u": only return the u matrix, without computing vh (if N > M).
- "vh": only return the vh matrix, without computing u (if N <= M).
.. versionadded:: 0.16.0
solver : str, optional
Eigenvalue solver to use. Should be 'arpack' or 'lobpcg'.
Default: 'arpack'
Returns
-------
u : ndarray, shape=(M, k)
Unitary matrix having left singular vectors as columns.
If `return_singular_vectors` is "vh", this variable is not computed,
and None is returned instead.
s : ndarray, shape=(k,)
The singular values.
vt : ndarray, shape=(k, N)
Unitary matrix having right singular vectors as rows.
If `return_singular_vectors` is "u", this variable is not computed,
and None is returned instead.
Notes
-----
This is a naive implementation using ARPACK or LOBPCG as an eigensolver
on A.H * A or A * A.H, depending on which one is more efficient.
Examples
--------
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import svds, eigs
>>> A = csc_matrix([[1, 0, 0], [5, 0, 2], [0, -1, 0], [0, 0, 3]], dtype=float)
>>> u, s, vt = svds(A, k=2)
>>> s
array([ 2.75193379, 5.6059665 ])
>>> np.sqrt(eigs(A.dot(A.T), k=2)[0]).real
array([ 5.6059665 , 2.75193379])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :