Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.sparse.linalg »

Fonction lgmres - module scipy.sparse.linalg

Signature de la fonction lgmres

def lgmres(A, b, x0=None, tol=1e-05, maxiter=1000, M=None, callback=None, inner_m=30, outer_k=3, outer_v=None, store_outer_Av=True, prepend_outer_v=False, atol=None) 

Description

lgmres.__doc__

    Solve a matrix equation using the LGMRES algorithm.

    The LGMRES algorithm [1]_ [2]_ is designed to avoid some problems
    in the convergence in restarted GMRES, and often converges in fewer
    iterations.

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The real or complex N-by-N matrix of the linear system.
        Alternatively, ``A`` can be a linear operator which can
        produce ``Ax`` using, e.g.,
        ``scipy.sparse.linalg.LinearOperator``.
    b : {array, matrix}
        Right hand side of the linear system. Has shape (N,) or (N,1).
    x0  : {array, matrix}
        Starting guess for the solution.
    tol, atol : float, optional
        Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
        The default for ``atol`` is `tol`.

        .. warning::

           The default value for `atol` will be changed in a future release.
           For future compatibility, specify `atol` explicitly.
    maxiter : int, optional
        Maximum number of iterations.  Iteration will stop after maxiter
        steps even if the specified tolerance has not been achieved.
    M : {sparse matrix, dense matrix, LinearOperator}, optional
        Preconditioner for A.  The preconditioner should approximate the
        inverse of A.  Effective preconditioning dramatically improves the
        rate of convergence, which implies that fewer iterations are needed
        to reach a given error tolerance.
    callback : function, optional
        User-supplied function to call after each iteration.  It is called
        as callback(xk), where xk is the current solution vector.
    inner_m : int, optional
        Number of inner GMRES iterations per each outer iteration.
    outer_k : int, optional
        Number of vectors to carry between inner GMRES iterations.
        According to [1]_, good values are in the range of 1...3.
        However, note that if you want to use the additional vectors to
        accelerate solving multiple similar problems, larger values may
        be beneficial.
    outer_v : list of tuples, optional
        List containing tuples ``(v, Av)`` of vectors and corresponding
        matrix-vector products, used to augment the Krylov subspace, and
        carried between inner GMRES iterations. The element ``Av`` can
        be `None` if the matrix-vector product should be re-evaluated.
        This parameter is modified in-place by `lgmres`, and can be used
        to pass "guess" vectors in and out of the algorithm when solving
        similar problems.
    store_outer_Av : bool, optional
        Whether LGMRES should store also A*v in addition to vectors `v`
        in the `outer_v` list. Default is True.
    prepend_outer_v : bool, optional 
        Whether to put outer_v augmentation vectors before Krylov iterates.
        In standard LGMRES, prepend_outer_v=False.

    Returns
    -------
    x : array or matrix
        The converged solution.
    info : int
        Provides convergence information:

            - 0  : successful exit
            - >0 : convergence to tolerance not achieved, number of iterations
            - <0 : illegal input or breakdown

    Notes
    -----
    The LGMRES algorithm [1]_ [2]_ is designed to avoid the
    slowing of convergence in restarted GMRES, due to alternating
    residual vectors. Typically, it often outperforms GMRES(m) of
    comparable memory requirements by some measure, or at least is not
    much worse.

    Another advantage in this algorithm is that you can supply it with
    'guess' vectors in the `outer_v` argument that augment the Krylov
    subspace. If the solution lies close to the span of these vectors,
    the algorithm converges faster. This can be useful if several very
    similar matrices need to be inverted one after another, such as in
    Newton-Krylov iteration where the Jacobian matrix often changes
    little in the nonlinear steps.

    References
    ----------
    .. [1] A.H. Baker and E.R. Jessup and T. Manteuffel, "A Technique for
             Accelerating the Convergence of Restarted GMRES", SIAM J. Matrix
             Anal. Appl. 26, 962 (2005).
    .. [2] A.H. Baker, "On Improving the Performance of the Linear Solver
             restarted GMRES", PhD thesis, University of Colorado (2003).

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import lgmres
    >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = lgmres(A, b)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True