Module « scipy.sparse.linalg »
Signature de la fonction splu
def splu(A, permc_spec=None, diag_pivot_thresh=None, relax=None, panel_size=None, options={})
Description
splu.__doc__
Compute the LU decomposition of a sparse, square matrix.
Parameters
----------
A : sparse matrix
Sparse matrix to factorize. Should be in CSR or CSC format.
permc_spec : str, optional
How to permute the columns of the matrix for sparsity preservation.
(default: 'COLAMD')
- ``NATURAL``: natural ordering.
- ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
- ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
- ``COLAMD``: approximate minimum degree column ordering
diag_pivot_thresh : float, optional
Threshold used for a diagonal entry to be an acceptable pivot.
See SuperLU user's guide for details [1]_
relax : int, optional
Expert option for customizing the degree of relaxing supernodes.
See SuperLU user's guide for details [1]_
panel_size : int, optional
Expert option for customizing the panel size.
See SuperLU user's guide for details [1]_
options : dict, optional
Dictionary containing additional expert options to SuperLU.
See SuperLU user guide [1]_ (section 2.4 on the 'Options' argument)
for more details. For example, you can specify
``options=dict(Equil=False, IterRefine='SINGLE'))``
to turn equilibration off and perform a single iterative refinement.
Returns
-------
invA : scipy.sparse.linalg.SuperLU
Object, which has a ``solve`` method.
See also
--------
spilu : incomplete LU decomposition
Notes
-----
This function uses the SuperLU library.
References
----------
.. [1] SuperLU http://crd.lbl.gov/~xiaoye/SuperLU/
Examples
--------
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import splu
>>> A = csc_matrix([[1., 0., 0.], [5., 0., 2.], [0., -1., 0.]], dtype=float)
>>> B = splu(A)
>>> x = np.array([1., 2., 3.], dtype=float)
>>> B.solve(x)
array([ 1. , -3. , -1.5])
>>> A.dot(B.solve(x))
array([ 1., 2., 3.])
>>> B.solve(A.dot(x))
array([ 1., 2., 3.])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :