Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Module « scipy.sparse.linalg »
Signature de la fonction gcrotmk
def gcrotmk(A, b, x0=None, *, rtol=1e-05, atol=0.0, maxiter=1000, M=None, callback=None, m=20, k=None, CU=None, discard_C=False, truncate='oldest')
Description
help(scipy.sparse.linalg.gcrotmk)
Solve a matrix equation using flexible GCROT(m,k) algorithm.
Parameters
----------
A : {sparse array, ndarray, LinearOperator}
The real or complex N-by-N matrix of the linear system.
Alternatively, `A` can be a linear operator which can
produce ``Ax`` using, e.g.,
`LinearOperator`.
b : ndarray
Right hand side of the linear system. Has shape (N,) or (N,1).
x0 : ndarray
Starting guess for the solution.
rtol, atol : float, optional
Parameters for the convergence test. For convergence,
``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied.
The default is ``rtol=1e-5`` and ``atol=0.0``.
maxiter : int, optional
Maximum number of iterations. Iteration will stop after maxiter
steps even if the specified tolerance has not been achieved. The
default is ``1000``.
M : {sparse array, ndarray, LinearOperator}, optional
Preconditioner for `A`. The preconditioner should approximate the
inverse of `A`. gcrotmk is a 'flexible' algorithm and the preconditioner
can vary from iteration to iteration. Effective preconditioning
dramatically improves the rate of convergence, which implies that
fewer iterations are needed to reach a given error tolerance.
callback : function, optional
User-supplied function to call after each iteration. It is called
as ``callback(xk)``, where ``xk`` is the current solution vector.
m : int, optional
Number of inner FGMRES iterations per each outer iteration.
Default: 20
k : int, optional
Number of vectors to carry between inner FGMRES iterations.
According to [2]_, good values are around `m`.
Default: `m`
CU : list of tuples, optional
List of tuples ``(c, u)`` which contain the columns of the matrices
C and U in the GCROT(m,k) algorithm. For details, see [2]_.
The list given and vectors contained in it are modified in-place.
If not given, start from empty matrices. The ``c`` elements in the
tuples can be ``None``, in which case the vectors are recomputed
via ``c = A u`` on start and orthogonalized as described in [3]_.
discard_C : bool, optional
Discard the C-vectors at the end. Useful if recycling Krylov subspaces
for different linear systems.
truncate : {'oldest', 'smallest'}, optional
Truncation scheme to use. Drop: oldest vectors, or vectors with
smallest singular values using the scheme discussed in [1,2].
See [2]_ for detailed comparison.
Default: 'oldest'
Returns
-------
x : ndarray
The solution found.
info : int
Provides convergence information:
* 0 : successful exit
* >0 : convergence to tolerance not achieved, number of iterations
References
----------
.. [1] E. de Sturler, ''Truncation strategies for optimal Krylov subspace
methods'', SIAM J. Numer. Anal. 36, 864 (1999).
.. [2] J.E. Hicken and D.W. Zingg, ''A simplified and flexible variant
of GCROT for solving nonsymmetric linear systems'',
SIAM J. Sci. Comput. 32, 172 (2010).
.. [3] M.L. Parks, E. de Sturler, G. Mackey, D.D. Johnson, S. Maiti,
''Recycling Krylov subspaces for sequences of linear systems'',
SIAM J. Sci. Comput. 28, 1651 (2006).
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csc_array
>>> from scipy.sparse.linalg import gcrotmk
>>> R = np.random.randn(5, 5)
>>> A = csc_array(R)
>>> b = np.random.randn(5)
>>> x, exit_code = gcrotmk(A, b, atol=1e-5)
>>> print(exit_code)
0
>>> np.allclose(A.dot(x), b)
True
Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :