Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Module « scipy.sparse.linalg »
Signature de la fonction qmr
def qmr(A, b, x0=None, *, rtol=1e-05, atol=0.0, maxiter=None, M1=None, M2=None, callback=None)
Description
help(scipy.sparse.linalg.qmr)
Use Quasi-Minimal Residual iteration to solve ``Ax = b``.
Parameters
----------
A : {sparse array, ndarray, LinearOperator}
The real-valued N-by-N matrix of the linear system.
Alternatively, ``A`` can be a linear operator which can
produce ``Ax`` and ``A^T x`` using, e.g.,
``scipy.sparse.linalg.LinearOperator``.
b : ndarray
Right hand side of the linear system. Has shape (N,) or (N,1).
x0 : ndarray
Starting guess for the solution.
atol, rtol : float, optional
Parameters for the convergence test. For convergence,
``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied.
The default is ``atol=0.`` and ``rtol=1e-5``.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter
steps even if the specified tolerance has not been achieved.
M1 : {sparse array, ndarray, LinearOperator}
Left preconditioner for A.
M2 : {sparse array, ndarray, LinearOperator}
Right preconditioner for A. Used together with the left
preconditioner M1. The matrix M1@A@M2 should have better
conditioned than A alone.
callback : function
User-supplied function to call after each iteration. It is called
as callback(xk), where xk is the current solution vector.
Returns
-------
x : ndarray
The converged solution.
info : integer
Provides convergence information:
0 : successful exit
>0 : convergence to tolerance not achieved, number of iterations
<0 : parameter breakdown
See Also
--------
LinearOperator
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csc_array
>>> from scipy.sparse.linalg import qmr
>>> A = csc_array([[3., 2., 0.], [1., -1., 0.], [0., 5., 1.]])
>>> b = np.array([2., 4., -1.])
>>> x, exitCode = qmr(A, b, atol=1e-5)
>>> print(exitCode) # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :