Module « scipy.sparse.linalg »
Signature de la fonction cg
def cg(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None, atol=None)
Description
cg.__doc__
Use Conjugate Gradient iteration to solve ``Ax = b``.
Parameters
----------
A : {sparse matrix, dense matrix, LinearOperator}
The real or complex N-by-N matrix of the linear system.
``A`` must represent a hermitian, positive definite matrix.
Alternatively, ``A`` can be a linear operator which can
produce ``Ax`` using, e.g.,
``scipy.sparse.linalg.LinearOperator``.
b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).
Returns
-------
x : {array, matrix}
The converged solution.
info : integer
Provides convergence information:
0 : successful exit
>0 : convergence to tolerance not achieved, number of iterations
<0 : illegal input or breakdown
Other Parameters
----------------
x0 : {array, matrix}
Starting guess for the solution.
tol, atol : float, optional
Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
The default for ``atol`` is ``'legacy'``, which emulates
a different legacy behavior.
.. warning::
The default value for `atol` will be changed in a future release.
For future compatibility, specify `atol` explicitly.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter
steps even if the specified tolerance has not been achieved.
M : {sparse matrix, dense matrix, LinearOperator}
Preconditioner for A. The preconditioner should approximate the
inverse of A. Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed
to reach a given error tolerance.
callback : function
User-supplied function to call after each iteration. It is called
as callback(xk), where xk is the current solution vector.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :