Module « scipy.sparse.linalg »
Signature de la fonction lsmr
def lsmr(A, b, damp=0.0, atol=1e-06, btol=1e-06, conlim=100000000.0, maxiter=None, show=False, x0=None)
Description
lsmr.__doc__
Iterative solver for least-squares problems.
lsmr solves the system of linear equations ``Ax = b``. If the system
is inconsistent, it solves the least-squares problem ``min ||b - Ax||_2``.
``A`` is a rectangular matrix of dimension m-by-n, where all cases are
allowed: m = n, m > n, or m < n. ``b`` is a vector of length m.
The matrix A may be dense or sparse (usually sparse).
Parameters
----------
A : {matrix, sparse matrix, ndarray, LinearOperator}
Matrix A in the linear system.
Alternatively, ``A`` can be a linear operator which can
produce ``Ax`` and ``A^H x`` using, e.g.,
``scipy.sparse.linalg.LinearOperator``.
b : array_like, shape (m,)
Vector ``b`` in the linear system.
damp : float
Damping factor for regularized least-squares. `lsmr` solves
the regularized least-squares problem::
min ||(b) - ( A )x||
||(0) (damp*I) ||_2
where damp is a scalar. If damp is None or 0, the system
is solved without regularization.
atol, btol : float, optional
Stopping tolerances. `lsmr` continues iterations until a
certain backward error estimate is smaller than some quantity
depending on atol and btol. Let ``r = b - Ax`` be the
residual vector for the current approximate solution ``x``.
If ``Ax = b`` seems to be consistent, ``lsmr`` terminates
when ``norm(r) <= atol * norm(A) * norm(x) + btol * norm(b)``.
Otherwise, lsmr terminates when ``norm(A^H r) <=
atol * norm(A) * norm(r)``. If both tolerances are 1.0e-6 (say),
the final ``norm(r)`` should be accurate to about 6
digits. (The final ``x`` will usually have fewer correct digits,
depending on ``cond(A)`` and the size of LAMBDA.) If `atol`
or `btol` is None, a default value of 1.0e-6 will be used.
Ideally, they should be estimates of the relative error in the
entries of ``A`` and ``b`` respectively. For example, if the entries
of ``A`` have 7 correct digits, set ``atol = 1e-7``. This prevents
the algorithm from doing unnecessary work beyond the
uncertainty of the input data.
conlim : float, optional
`lsmr` terminates if an estimate of ``cond(A)`` exceeds
`conlim`. For compatible systems ``Ax = b``, conlim could be
as large as 1.0e+12 (say). For least-squares problems,
`conlim` should be less than 1.0e+8. If `conlim` is None, the
default value is 1e+8. Maximum precision can be obtained by
setting ``atol = btol = conlim = 0``, but the number of
iterations may then be excessive.
maxiter : int, optional
`lsmr` terminates if the number of iterations reaches
`maxiter`. The default is ``maxiter = min(m, n)``. For
ill-conditioned systems, a larger value of `maxiter` may be
needed.
show : bool, optional
Print iterations logs if ``show=True``.
x0 : array_like, shape (n,), optional
Initial guess of ``x``, if None zeros are used.
.. versionadded:: 1.0.0
Returns
-------
x : ndarray of float
Least-square solution returned.
istop : int
istop gives the reason for stopping::
istop = 0 means x=0 is a solution. If x0 was given, then x=x0 is a
solution.
= 1 means x is an approximate solution to A*x = B,
according to atol and btol.
= 2 means x approximately solves the least-squares problem
according to atol.
= 3 means COND(A) seems to be greater than CONLIM.
= 4 is the same as 1 with atol = btol = eps (machine
precision)
= 5 is the same as 2 with atol = eps.
= 6 is the same as 3 with CONLIM = 1/eps.
= 7 means ITN reached maxiter before the other stopping
conditions were satisfied.
itn : int
Number of iterations used.
normr : float
``norm(b-Ax)``
normar : float
``norm(A^H (b - Ax))``
norma : float
``norm(A)``
conda : float
Condition number of A.
normx : float
``norm(x)``
Notes
-----
.. versionadded:: 0.11.0
References
----------
.. [1] D. C.-L. Fong and M. A. Saunders,
"LSMR: An iterative algorithm for sparse least-squares problems",
SIAM J. Sci. Comput., vol. 33, pp. 2950-2971, 2011.
:arxiv:`1006.0758`
.. [2] LSMR Software, https://web.stanford.edu/group/SOL/software/lsmr/
Examples
--------
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import lsmr
>>> A = csc_matrix([[1., 0.], [1., 1.], [0., 1.]], dtype=float)
The first example has the trivial solution `[0, 0]`
>>> b = np.array([0., 0., 0.], dtype=float)
>>> x, istop, itn, normr = lsmr(A, b)[:4]
>>> istop
0
>>> x
array([ 0., 0.])
The stopping code `istop=0` returned indicates that a vector of zeros was
found as a solution. The returned solution `x` indeed contains `[0., 0.]`.
The next example has a non-trivial solution:
>>> b = np.array([1., 0., -1.], dtype=float)
>>> x, istop, itn, normr = lsmr(A, b)[:4]
>>> istop
1
>>> x
array([ 1., -1.])
>>> itn
1
>>> normr
4.440892098500627e-16
As indicated by `istop=1`, `lsmr` found a solution obeying the tolerance
limits. The given solution `[1., -1.]` obviously solves the equation. The
remaining return values include information about the number of iterations
(`itn=1`) and the remaining difference of left and right side of the solved
equation.
The final example demonstrates the behavior in the case where there is no
solution for the equation:
>>> b = np.array([1., 0.01, -1.], dtype=float)
>>> x, istop, itn, normr = lsmr(A, b)[:4]
>>> istop
2
>>> x
array([ 1.00333333, -0.99666667])
>>> A.dot(x)-b
array([ 0.00333333, -0.00333333, 0.00333333])
>>> normr
0.005773502691896255
`istop` indicates that the system is inconsistent and thus `x` is rather an
approximate solution to the corresponding least-squares problem. `normr`
contains the minimal distance that was found.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :