Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Module « scipy.sparse.linalg »
Signature de la fonction bicgstab
def bicgstab(A, b, x0=None, *, rtol=1e-05, atol=0.0, maxiter=None, M=None, callback=None)
Description
help(scipy.sparse.linalg.bicgstab)
Use BIConjugate Gradient STABilized iteration to solve ``Ax = b``.
Parameters
----------
A : {sparse array, ndarray, LinearOperator}
The real or complex N-by-N matrix of the linear system.
Alternatively, `A` can be a linear operator which can
produce ``Ax`` and ``A^T x`` using, e.g.,
``scipy.sparse.linalg.LinearOperator``.
b : ndarray
Right hand side of the linear system. Has shape (N,) or (N,1).
x0 : ndarray
Starting guess for the solution.
rtol, atol : float, optional
Parameters for the convergence test. For convergence,
``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied.
The default is ``atol=0.`` and ``rtol=1e-5``.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter
steps even if the specified tolerance has not been achieved.
M : {sparse array, ndarray, LinearOperator}
Preconditioner for `A`. It should approximate the
inverse of `A` (see Notes). Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed
to reach a given error tolerance.
callback : function
User-supplied function to call after each iteration. It is called
as ``callback(xk)``, where ``xk`` is the current solution vector.
Returns
-------
x : ndarray
The converged solution.
info : integer
Provides convergence information:
0 : successful exit
>0 : convergence to tolerance not achieved, number of iterations
<0 : parameter breakdown
Notes
-----
The preconditioner `M` should be a matrix such that ``M @ A`` has a smaller
condition number than `A`, see [1]_ .
References
----------
.. [1] "Preconditioner", Wikipedia,
https://en.wikipedia.org/wiki/Preconditioner
.. [2] "Biconjugate gradient stabilized method",
Wikipedia, https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csc_array
>>> from scipy.sparse.linalg import bicgstab
>>> R = np.array([[4, 2, 0, 1],
... [3, 0, 0, 2],
... [0, 1, 1, 1],
... [0, 2, 1, 0]])
>>> A = csc_array(R)
>>> b = np.array([-1, -0.5, -1, 2])
>>> x, exit_code = bicgstab(A, b, atol=1e-5)
>>> print(exit_code) # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
Vous êtes un professionnel et vous avez besoin d'une formation ?
Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :