Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.sparse.linalg »
Signature de la fonction spsolve
def spsolve(A, b, permc_spec=None, use_umfpack=True)
Description
help(scipy.sparse.linalg.spsolve)
Solve the sparse linear system Ax=b, where b may be a vector or a matrix.
Parameters
----------
A : ndarray or sparse array or matrix
The square matrix A will be converted into CSC or CSR form
b : ndarray or sparse array or matrix
The matrix or vector representing the right hand side of the equation.
If a vector, b.shape must be (n,) or (n, 1).
permc_spec : str, optional
How to permute the columns of the matrix for sparsity preservation.
(default: 'COLAMD')
- ``NATURAL``: natural ordering.
- ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
- ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
- ``COLAMD``: approximate minimum degree column ordering [1]_, [2]_.
use_umfpack : bool, optional
if True (default) then use UMFPACK for the solution [3]_, [4]_, [5]_,
[6]_ . This is only referenced if b is a vector and
``scikits.umfpack`` is installed.
Returns
-------
x : ndarray or sparse array or matrix
the solution of the sparse linear equation.
If b is a vector, then x is a vector of size A.shape[1]
If b is a matrix, then x is a matrix of size (A.shape[1], b.shape[1])
Notes
-----
For solving the matrix expression AX = B, this solver assumes the resulting
matrix X is sparse, as is often the case for very sparse inputs. If the
resulting X is dense, the construction of this sparse result will be
relatively expensive. In that case, consider converting A to a dense
matrix and using scipy.linalg.solve or its variants.
References
----------
.. [1] T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836:
COLAMD, an approximate column minimum degree ordering algorithm,
ACM Trans. on Mathematical Software, 30(3), 2004, pp. 377--380.
:doi:`10.1145/1024074.1024080`
.. [2] T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, A column approximate
minimum degree ordering algorithm, ACM Trans. on Mathematical
Software, 30(3), 2004, pp. 353--376. :doi:`10.1145/1024074.1024079`
.. [3] T. A. Davis, Algorithm 832: UMFPACK - an unsymmetric-pattern
multifrontal method with a column pre-ordering strategy, ACM
Trans. on Mathematical Software, 30(2), 2004, pp. 196--199.
https://dl.acm.org/doi/abs/10.1145/992200.992206
.. [4] T. A. Davis, A column pre-ordering strategy for the
unsymmetric-pattern multifrontal method, ACM Trans.
on Mathematical Software, 30(2), 2004, pp. 165--195.
https://dl.acm.org/doi/abs/10.1145/992200.992205
.. [5] T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal
method for unsymmetric sparse matrices, ACM Trans. on
Mathematical Software, 25(1), 1999, pp. 1--19.
https://doi.org/10.1145/305658.287640
.. [6] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal
method for sparse LU factorization, SIAM J. Matrix Analysis and
Computations, 18(1), 1997, pp. 140--158.
https://doi.org/10.1137/S0895479894246905T.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csc_array
>>> from scipy.sparse.linalg import spsolve
>>> A = csc_array([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
>>> B = csc_array([[2, 0], [-1, 0], [2, 0]], dtype=float)
>>> x = spsolve(A, B)
>>> np.allclose(A.dot(x).toarray(), B.toarray())
True
Vous êtes un professionnel et vous avez besoin d'une formation ?
Calcul scientifique
avec Python
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :