Module « scipy.sparse.linalg »
Signature de la fonction eigs
def eigs(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, OPpart=None)
Description
eigs.__doc__
Find k eigenvalues and eigenvectors of the square matrix A.
Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem
for w[i] eigenvalues with corresponding eigenvectors x[i].
If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the
generalized eigenvalue problem for w[i] eigenvalues
with corresponding eigenvectors x[i]
Parameters
----------
A : ndarray, sparse matrix or LinearOperator
An array, sparse matrix, or LinearOperator representing
the operation ``A * x``, where A is a real or complex square matrix.
k : int, optional
The number of eigenvalues and eigenvectors desired.
`k` must be smaller than N-1. It is not possible to compute all
eigenvectors of a matrix.
M : ndarray, sparse matrix or LinearOperator, optional
An array, sparse matrix, or LinearOperator representing
the operation M*x for the generalized eigenvalue problem
A * x = w * M * x.
M must represent a real symmetric matrix if A is real, and must
represent a complex Hermitian matrix if A is complex. For best
results, the data type of M should be the same as that of A.
Additionally:
If `sigma` is None, M is positive definite
If sigma is specified, M is positive semi-definite
If sigma is None, eigs requires an operator to compute the solution
of the linear equation ``M * x = b``. This is done internally via a
(sparse) LU decomposition for an explicit matrix M, or via an
iterative solver for a general linear operator. Alternatively,
the user can supply the matrix or operator Minv, which gives
``x = Minv * b = M^-1 * b``.
sigma : real or complex, optional
Find eigenvalues near sigma using shift-invert mode. This requires
an operator to compute the solution of the linear system
``[A - sigma * M] * x = b``, where M is the identity matrix if
unspecified. This is computed internally via a (sparse) LU
decomposition for explicit matrices A & M, or via an iterative
solver if either A or M is a general linear operator.
Alternatively, the user can supply the matrix or operator OPinv,
which gives ``x = OPinv * b = [A - sigma * M]^-1 * b``.
For a real matrix A, shift-invert can either be done in imaginary
mode or real mode, specified by the parameter OPpart ('r' or 'i').
Note that when sigma is specified, the keyword 'which' (below)
refers to the shifted eigenvalues ``w'[i]`` where:
If A is real and OPpart == 'r' (default),
``w'[i] = 1/2 * [1/(w[i]-sigma) + 1/(w[i]-conj(sigma))]``.
If A is real and OPpart == 'i',
``w'[i] = 1/2i * [1/(w[i]-sigma) - 1/(w[i]-conj(sigma))]``.
If A is complex, ``w'[i] = 1/(w[i]-sigma)``.
v0 : ndarray, optional
Starting vector for iteration.
Default: random
ncv : int, optional
The number of Lanczos vectors generated
`ncv` must be greater than `k`; it is recommended that ``ncv > 2*k``.
Default: ``min(n, max(2*k + 1, 20))``
which : str, ['LM' | 'SM' | 'LR' | 'SR' | 'LI' | 'SI'], optional
Which `k` eigenvectors and eigenvalues to find:
'LM' : largest magnitude
'SM' : smallest magnitude
'LR' : largest real part
'SR' : smallest real part
'LI' : largest imaginary part
'SI' : smallest imaginary part
When sigma != None, 'which' refers to the shifted eigenvalues w'[i]
(see discussion in 'sigma', above). ARPACK is generally better
at finding large values than small values. If small eigenvalues are
desired, consider using shift-invert mode for better performance.
maxiter : int, optional
Maximum number of Arnoldi update iterations allowed
Default: ``n*10``
tol : float, optional
Relative accuracy for eigenvalues (stopping criterion)
The default value of 0 implies machine precision.
return_eigenvectors : bool, optional
Return eigenvectors (True) in addition to eigenvalues
Minv : ndarray, sparse matrix or LinearOperator, optional
See notes in M, above.
OPinv : ndarray, sparse matrix or LinearOperator, optional
See notes in sigma, above.
OPpart : {'r' or 'i'}, optional
See notes in sigma, above
Returns
-------
w : ndarray
Array of k eigenvalues.
v : ndarray
An array of `k` eigenvectors.
``v[:, i]`` is the eigenvector corresponding to the eigenvalue w[i].
Raises
------
ArpackNoConvergence
When the requested convergence is not obtained.
The currently converged eigenvalues and eigenvectors can be found
as ``eigenvalues`` and ``eigenvectors`` attributes of the exception
object.
See Also
--------
eigsh : eigenvalues and eigenvectors for symmetric matrix A
svds : singular value decomposition for a matrix A
Notes
-----
This function is a wrapper to the ARPACK [1]_ SNEUPD, DNEUPD, CNEUPD,
ZNEUPD, functions which use the Implicitly Restarted Arnoldi Method to
find the eigenvalues and eigenvectors [2]_.
References
----------
.. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/
.. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE:
Solution of Large Scale Eigenvalue Problems by Implicitly Restarted
Arnoldi Methods. SIAM, Philadelphia, PA, 1998.
Examples
--------
Find 6 eigenvectors of the identity matrix:
>>> from scipy.sparse.linalg import eigs
>>> id = np.eye(13)
>>> vals, vecs = eigs(id, k=6)
>>> vals
array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])
>>> vecs.shape
(13, 6)
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :