Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Module « scipy.sparse.linalg »

Fonction eigs - module scipy.sparse.linalg

Signature de la fonction eigs

def eigs(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, OPpart=None) 

Description

help(scipy.sparse.linalg.eigs)

Find k eigenvalues and eigenvectors of the square matrix A.

Solves ``A @ x[i] = w[i] * x[i]``, the standard eigenvalue problem
for w[i] eigenvalues with corresponding eigenvectors x[i].

If M is specified, solves ``A @ x[i] = w[i] * M @ x[i]``, the
generalized eigenvalue problem for w[i] eigenvalues
with corresponding eigenvectors x[i]

Parameters
----------
A : ndarray, sparse matrix or LinearOperator
    An array, sparse matrix, or LinearOperator representing
    the operation ``A @ x``, where A is a real or complex square matrix.
k : int, optional
    The number of eigenvalues and eigenvectors desired.
    `k` must be smaller than N-1. It is not possible to compute all
    eigenvectors of a matrix.
M : ndarray, sparse matrix or LinearOperator, optional
    An array, sparse matrix, or LinearOperator representing
    the operation M@x for the generalized eigenvalue problem

        A @ x = w * M @ x.

    M must represent a real symmetric matrix if A is real, and must
    represent a complex Hermitian matrix if A is complex. For best
    results, the data type of M should be the same as that of A.
    Additionally:

        If `sigma` is None, M is positive definite

        If sigma is specified, M is positive semi-definite

    If sigma is None, eigs requires an operator to compute the solution
    of the linear equation ``M @ x = b``.  This is done internally via a
    (sparse) LU decomposition for an explicit matrix M, or via an
    iterative solver for a general linear operator.  Alternatively,
    the user can supply the matrix or operator Minv, which gives
    ``x = Minv @ b = M^-1 @ b``.
sigma : real or complex, optional
    Find eigenvalues near sigma using shift-invert mode.  This requires
    an operator to compute the solution of the linear system
    ``[A - sigma * M] @ x = b``, where M is the identity matrix if
    unspecified. This is computed internally via a (sparse) LU
    decomposition for explicit matrices A & M, or via an iterative
    solver if either A or M is a general linear operator.
    Alternatively, the user can supply the matrix or operator OPinv,
    which gives ``x = OPinv @ b = [A - sigma * M]^-1 @ b``.
    For a real matrix A, shift-invert can either be done in imaginary
    mode or real mode, specified by the parameter OPpart ('r' or 'i').
    Note that when sigma is specified, the keyword 'which' (below)
    refers to the shifted eigenvalues ``w'[i]`` where:

        If A is real and OPpart == 'r' (default),
          ``w'[i] = 1/2 * [1/(w[i]-sigma) + 1/(w[i]-conj(sigma))]``.

        If A is real and OPpart == 'i',
          ``w'[i] = 1/2i * [1/(w[i]-sigma) - 1/(w[i]-conj(sigma))]``.

        If A is complex, ``w'[i] = 1/(w[i]-sigma)``.

v0 : ndarray, optional
    Starting vector for iteration.
    Default: random
ncv : int, optional
    The number of Lanczos vectors generated
    `ncv` must be greater than `k`; it is recommended that ``ncv > 2*k``.
    Default: ``min(n, max(2*k + 1, 20))``
which : str, ['LM' | 'SM' | 'LR' | 'SR' | 'LI' | 'SI'], optional
    Which `k` eigenvectors and eigenvalues to find:

        'LM' : largest magnitude

        'SM' : smallest magnitude

        'LR' : largest real part

        'SR' : smallest real part

        'LI' : largest imaginary part

        'SI' : smallest imaginary part

    When sigma != None, 'which' refers to the shifted eigenvalues w'[i]
    (see discussion in 'sigma', above).  ARPACK is generally better
    at finding large values than small values.  If small eigenvalues are
    desired, consider using shift-invert mode for better performance.
maxiter : int, optional
    Maximum number of Arnoldi update iterations allowed
    Default: ``n*10``
tol : float, optional
    Relative accuracy for eigenvalues (stopping criterion)
    The default value of 0 implies machine precision.
return_eigenvectors : bool, optional
    Return eigenvectors (True) in addition to eigenvalues
Minv : ndarray, sparse matrix or LinearOperator, optional
    See notes in M, above.
OPinv : ndarray, sparse matrix or LinearOperator, optional
    See notes in sigma, above.
OPpart : {'r' or 'i'}, optional
    See notes in sigma, above

Returns
-------
w : ndarray
    Array of k eigenvalues.
v : ndarray
    An array of `k` eigenvectors.
    ``v[:, i]`` is the eigenvector corresponding to the eigenvalue w[i].

Raises
------
ArpackNoConvergence
    When the requested convergence is not obtained.
    The currently converged eigenvalues and eigenvectors can be found
    as ``eigenvalues`` and ``eigenvectors`` attributes of the exception
    object.

See Also
--------
eigsh : eigenvalues and eigenvectors for symmetric matrix A
svds : singular value decomposition for a matrix A

Notes
-----
This function is a wrapper to the ARPACK [1]_ SNEUPD, DNEUPD, CNEUPD,
ZNEUPD, functions which use the Implicitly Restarted Arnoldi Method to
find the eigenvalues and eigenvectors [2]_.

References
----------
.. [1] ARPACK Software, https://github.com/opencollab/arpack-ng
.. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang,  ARPACK USERS GUIDE:
   Solution of Large Scale Eigenvalue Problems by Implicitly Restarted
   Arnoldi Methods. SIAM, Philadelphia, PA, 1998.

Examples
--------
Find 6 eigenvectors of the identity matrix:

>>> import numpy as np
>>> from scipy.sparse.linalg import eigs
>>> id = np.eye(13)
>>> vals, vecs = eigs(id, k=6)
>>> vals
array([ 1.+0.j,  1.+0.j,  1.+0.j,  1.+0.j,  1.+0.j,  1.+0.j])
>>> vecs.shape
(13, 6)



Vous êtes un professionnel et vous avez besoin d'une formation ? Coder avec une
Intelligence Artificielle
Voir le programme détaillé