Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Module « scipy.stats.mstats »
Signature de la fonction tmean
def tmean(a, limits=None, inclusive=(True, True), axis=None)
Description
help(scipy.stats.mstats.tmean)
Compute the trimmed mean.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None (default), then all
values are used. Either of the limit values in the tuple can also be
None representing a half-open interval.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to operate. If None, compute over the
whole array. Default is None.
Returns
-------
tmean : float
Notes
-----
For more details on `tmean`, see `scipy.stats.tmean`.
Examples
--------
>>> import numpy as np
>>> from scipy.stats import mstats
>>> a = np.array([[6, 8, 3, 0],
... [3, 9, 1, 2],
... [8, 7, 8, 2],
... [5, 6, 0, 2],
... [4, 5, 5, 2]])
...
...
>>> mstats.tmean(a, (2,5))
3.3
>>> mstats.tmean(a, (2,5), axis=0)
masked_array(data=[4.0, 5.0, 4.0, 2.0],
mask=[False, False, False, False],
fill_value=1e+20)
Vous êtes un professionnel et vous avez besoin d'une formation ?
Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :