Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Compute the Kruskal-Wallis H-test for independent samples
Parameters
----------
sample1, sample2, ... : array_like
Two or more arrays with the sample measurements can be given as
arguments.
Returns
-------
statistic : float
The Kruskal-Wallis H statistic, corrected for ties
pvalue : float
The p-value for the test using the assumption that H has a chi
square distribution
Notes
-----
For more details on `kruskal`, see `stats.kruskal`.
Examples
--------
>>> from scipy.stats.mstats import kruskal
Random samples from three different brands of batteries were tested
to see how long the charge lasted. Results were as follows:
>>> a = [6.3, 5.4, 5.7, 5.2, 5.0]
>>> b = [6.9, 7.0, 6.1, 7.9]
>>> c = [7.2, 6.9, 6.1, 6.5]
Test the hypotesis that the distribution functions for all of the brands'
durations are identical. Use 5% level of significance.
>>> kruskal(a, b, c)
KruskalResult(statistic=7.113812154696133, pvalue=0.028526948491942164)
The null hypothesis is rejected at the 5% level of significance
because the returned p-value is less than the critical value of 5%.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :