Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Calculates the standard error of the mean of the input array.
Also sometimes called standard error of measurement.
Parameters
----------
a : array_like
An array containing the values for which the standard error is
returned.
axis : int or None, optional
If axis is None, ravel `a` first. If axis is an integer, this will be
the axis over which to operate. Defaults to 0.
ddof : int, optional
Delta degrees-of-freedom. How many degrees of freedom to adjust
for bias in limited samples relative to the population estimate
of variance. Defaults to 1.
Returns
-------
s : ndarray or float
The standard error of the mean in the sample(s), along the input axis.
Notes
-----
The default value for `ddof` changed in scipy 0.15.0 to be consistent with
`stats.sem` as well as with the most common definition used (like in the R
documentation).
Examples
--------
Find standard error along the first axis:
>>> from scipy import stats
>>> a = np.arange(20).reshape(5,4)
>>> print(stats.mstats.sem(a))
[2.8284271247461903 2.8284271247461903 2.8284271247461903
2.8284271247461903]
Find standard error across the whole array, using n degrees of freedom:
>>> print(stats.mstats.sem(a, axis=None, ddof=0))
1.2893796958227628
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :