Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Contenu du module « scipy.stats.mstats »

Liste des fonctions du module scipy.stats.mstats

Signature de la fonction Description
argstoarray(*args)
brunnermunzel(x, y, alternative='two-sided', distribution='t')
chisquare(f_obs, f_exp=None, ddof=0, axis=0) Calculate a one-way chi-square test. [extrait de chisquare.__doc__]
compare_medians_ms(group_1, group_2, axis=None)
count_tied_groups(x, use_missing=False)
describe(a, axis=0, ddof=0, bias=True)
f_oneway(*args)
find_repeats(arr) Find repeats in arr and return a tuple (repeats, repeat_count). [extrait de find_repeats.__doc__]
friedmanchisquare(*args) Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. [extrait de friedmanchisquare.__doc__]
gmean(a, axis=0, dtype=None, weights=None) Compute the geometric mean along the specified axis. [extrait de gmean.__doc__]
hdmedian(data, axis=-1, var=False)
hdquantiles(data, prob=[0.25, 0.5, 0.75], axis=None, var=False)
hdquantiles_sd(data, prob=[0.25, 0.5, 0.75], axis=None)
hmean(a, axis=0, dtype=None) Calculate the harmonic mean along the specified axis. [extrait de hmean.__doc__]
idealfourths(data, axis=None)
kendalltau(x, y, use_ties=True, use_missing=False, method='auto')
kendalltau_seasonal(x)
kruskal(*args)
ks_1samp(x, cdf, args=(), alternative='two-sided', mode='auto')
ks_2samp(data1, data2, alternative='two-sided', mode='auto')
kstest(data1, data2, args=(), alternative='two-sided', mode='auto')
kurtosis(a, axis=0, fisher=True, bias=True)
kurtosistest(a, axis=0)
linregress(x, y=None)
mannwhitneyu(x, y, use_continuity=True)
median_cihs(data, alpha=0.05, axis=None)
mjci(data, prob=[0.25, 0.5, 0.75], axis=None)
mode(a, axis=0)
moment(a, moment=1, axis=0)
mquantiles(a, prob=[0.25, 0.5, 0.75], alphap=0.4, betap=0.4, axis=None, limit=())
mquantiles_cimj(data, prob=[0.25, 0.5, 0.75], alpha=0.05, axis=None)
msign(x) Returns the sign of x, or 0 if x is masked. [extrait de msign.__doc__]
normaltest(a, axis=0)
obrientransform(*args)
pearsonr(x, y)
plotting_positions(data, alpha=0.4, beta=0.4)
pointbiserialr(x, y) Calculates a point biserial correlation coefficient and its p-value. [extrait de pointbiserialr.__doc__]
rankdata(data, axis=None, use_missing=False) Returns the rank (also known as order statistics) of each data point [extrait de rankdata.__doc__]
rsh(data, points=None)
scoreatpercentile(data, per, limit=(), alphap=0.4, betap=0.4) Calculate the score at the given 'per' percentile of the [extrait de scoreatpercentile.__doc__]
sem(a, axis=0, ddof=1)
sen_seasonal_slopes(x)
siegelslopes(y, x=None, method='hierarchical')
skew(a, axis=0, bias=True)
skewtest(a, axis=0)
spearmanr(x, y=None, use_ties=True, axis=None, nan_policy='propagate', alternative='two-sided')
theilslopes(y, x=None, alpha=0.95)
tmax(a, upperlimit=None, axis=0, inclusive=True)
tmean(a, limits=None, inclusive=(True, True), axis=None)
tmin(a, lowerlimit=None, axis=0, inclusive=True)
trim(a, limits=None, inclusive=(True, True), relative=False, axis=None)
trima(a, limits=None, inclusive=(True, True))
trimboth(data, proportiontocut=0.2, inclusive=(True, True), axis=None)
trimmed_mean(a, limits=(0.1, 0.1), inclusive=(1, 1), relative=True, axis=None) Returns the trimmed mean of the data along the given axis. [extrait de trimmed_mean.__doc__]
trimmed_mean_ci(data, limits=(0.2, 0.2), inclusive=(True, True), alpha=0.05, axis=None)
trimmed_std(a, limits=(0.1, 0.1), inclusive=(1, 1), relative=True, axis=None, ddof=0) Returns the trimmed standard deviation of the data along the given axis. [extrait de trimmed_std.__doc__]
trimmed_stde(a, limits=(0.1, 0.1), inclusive=(1, 1), axis=None)
trimmed_var(a, limits=(0.1, 0.1), inclusive=(1, 1), relative=True, axis=None, ddof=0) Returns the trimmed variance of the data along the given axis. [extrait de trimmed_var.__doc__]
trimr(a, limits=None, inclusive=(True, True), axis=None)
trimtail(data, proportiontocut=0.2, tail='left', inclusive=(True, True), axis=None)
tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1)
ttest_1samp(a, popmean, axis=0)
ttest_ind(a, b, axis=0, equal_var=True)
ttest_rel(a, b, axis=0)
tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1)
variation(a, axis=0, ddof=0)
winsorize(a, limits=None, inclusive=(True, True), inplace=False, axis=None, nan_policy='propagate') Returns a Winsorized version of the input array. [extrait de winsorize.__doc__]
zmap(scores, compare, axis=0, ddof=0, nan_policy='propagate')
zscore(a, axis=0, ddof=0, nan_policy='propagate')

Liste des alias du module scipy.stats.mstats

Nom de l'alias Définition ciblée
kruskalwallis kruskal
ks_twosamp ks_2samp
meppf plotting_positions
ttest_onesamp ttest_1samp