Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Module « scipy.special »
Signature de la fonction y0_zeros
def y0_zeros(nt, complex=False)
Description
help(scipy.special.y0_zeros)
Compute nt zeros of Bessel function Y0(z), and derivative at each zero.
The derivatives are given by Y0'(z0) = -Y1(z0) at each zero z0.
Parameters
----------
nt : int
Number of zeros to return
complex : bool, default False
Set to False to return only the real zeros; set to True to return only
the complex zeros with negative real part and positive imaginary part.
Note that the complex conjugates of the latter are also zeros of the
function, but are not returned by this routine.
Returns
-------
z0n : ndarray
Location of nth zero of Y0(z)
y0pz0n : ndarray
Value of derivative Y0'(z0) for nth zero
References
----------
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
Functions", John Wiley and Sons, 1996, chapter 5.
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
Examples
--------
Compute the first 4 real roots and the derivatives at the roots of
:math:`Y_0`:
>>> import numpy as np
>>> from scipy.special import y0_zeros
>>> zeros, grads = y0_zeros(4)
>>> with np.printoptions(precision=5):
... print(f"Roots: {zeros}")
... print(f"Gradients: {grads}")
Roots: [ 0.89358+0.j 3.95768+0.j 7.08605+0.j 10.22235+0.j]
Gradients: [-0.87942+0.j 0.40254+0.j -0.3001 +0.j 0.2497 +0.j]
Plot the real part of :math:`Y_0` and the first four computed roots.
>>> import matplotlib.pyplot as plt
>>> from scipy.special import y0
>>> xmin = 0
>>> xmax = 11
>>> x = np.linspace(xmin, xmax, 500)
>>> fig, ax = plt.subplots()
>>> ax.hlines(0, xmin, xmax, color='k')
>>> ax.plot(x, y0(x), label=r'$Y_0$')
>>> zeros, grads = y0_zeros(4)
>>> ax.scatter(zeros.real, np.zeros((4, )), s=30, c='r',
... label=r'$Y_0$_zeros', zorder=5)
>>> ax.set_ylim(-0.5, 0.6)
>>> ax.set_xlim(xmin, xmax)
>>> plt.legend(ncol=2)
>>> plt.show()
Compute the first 4 complex roots and the derivatives at the roots of
:math:`Y_0` by setting ``complex=True``:
>>> y0_zeros(4, True)
(array([ -2.40301663+0.53988231j, -5.5198767 +0.54718001j,
-8.6536724 +0.54841207j, -11.79151203+0.54881912j]),
array([ 0.10074769-0.88196771j, -0.02924642+0.5871695j ,
0.01490806-0.46945875j, -0.00937368+0.40230454j]))
Vous êtes un professionnel et vous avez besoin d'une formation ?
Calcul scientifique
avec Python
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :