Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Module « scipy.special »
Signature de la fonction ellipeinc
def ellipeinc(*args, **kwargs)
Description
help(scipy.special.ellipeinc)
ellipeinc(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
ellipeinc(phi, m, out=None)
Incomplete elliptic integral of the second kind
This function is defined as
.. math:: E(\phi, m) = \int_0^{\phi} [1 - m \sin(t)^2]^{1/2} dt
Parameters
----------
phi : array_like
amplitude of the elliptic integral.
m : array_like
parameter of the elliptic integral.
out : ndarray, optional
Optional output array for the function values
Returns
-------
E : scalar or ndarray
Value of the elliptic integral.
See Also
--------
ellipkm1 : Complete elliptic integral of the first kind, near `m` = 1
ellipk : Complete elliptic integral of the first kind
ellipkinc : Incomplete elliptic integral of the first kind
ellipe : Complete elliptic integral of the second kind
elliprd : Symmetric elliptic integral of the second kind.
elliprf : Completely-symmetric elliptic integral of the first kind.
elliprg : Completely-symmetric elliptic integral of the second kind.
Notes
-----
Wrapper for the Cephes [1]_ routine `ellie`.
Computation uses arithmetic-geometric means algorithm.
The parameterization in terms of :math:`m` follows that of section
17.2 in [2]_. Other parameterizations in terms of the
complementary parameter :math:`1 - m`, modular angle
:math:`\sin^2(\alpha) = m`, or modulus :math:`k^2 = m` are also
used, so be careful that you choose the correct parameter.
The Legendre E incomplete integral can be related to combinations
of Carlson's symmetric integrals R_D, R_F, and R_G in multiple
ways [3]_. For example, with :math:`c = \csc^2\phi`,
.. math::
E(\phi, m) = R_F(c-1, c-k^2, c)
- \frac{1}{3} k^2 R_D(c-1, c-k^2, c) .
References
----------
.. [1] Cephes Mathematical Functions Library,
http://www.netlib.org/cephes/
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover, 1972.
.. [3] NIST Digital Library of Mathematical
Functions. http://dlmf.nist.gov/, Release 1.0.28 of
2020-09-15. See Sec. 19.25(i) https://dlmf.nist.gov/19.25#i
Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :