Module « scipy.sparse »
Classe « dia_matrix »
Informations générales
Héritage
builtins.object
spmatrix
_data_matrix
dia_matrix
Définition
class dia_matrix(_data_matrix):
Description [extrait de dia_matrix.__doc__]
Sparse matrix with DIAgonal storage
This can be instantiated in several ways:
dia_matrix(D)
with a dense matrix
dia_matrix(S)
with another sparse matrix S (equivalent to S.todia())
dia_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N),
dtype is optional, defaulting to dtype='d'.
dia_matrix((data, offsets), shape=(M, N))
where the ``data[k,:]`` stores the diagonal entries for
diagonal ``offsets[k]`` (See example below)
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
Number of stored values, including explicit zeros
data
DIA format data array of the matrix
offsets
DIA format offset array of the matrix
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import dia_matrix
>>> dia_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0)
>>> offsets = np.array([0, -1, 2])
>>> dia_matrix((data, offsets), shape=(4, 4)).toarray()
array([[1, 0, 3, 0],
[1, 2, 0, 4],
[0, 2, 3, 0],
[0, 0, 3, 4]])
>>> from scipy.sparse import dia_matrix
>>> n = 10
>>> ex = np.ones(n)
>>> data = np.array([ex, 2 * ex, ex])
>>> offsets = np.array([-1, 0, 1])
>>> dia_matrix((data, offsets), shape=(n, n)).toarray()
array([[2., 1., 0., ..., 0., 0., 0.],
[1., 2., 1., ..., 0., 0., 0.],
[0., 1., 2., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 2., 1., 0.],
[0., 0., 0., ..., 1., 2., 1.],
[0., 0., 0., ..., 0., 1., 2.]])
Constructeur(s)
Liste des attributs statiques
Liste des propriétés
dtype | |
nnz | Number of stored values, including explicit zeros. [extrait de __doc__] |
shape | Get shape of a matrix. [extrait de __doc__] |
Liste des opérateurs
Opérateurs hérités de la classe _data_matrix
__imul__, __itruediv__, __neg__
Liste des opérateurs
Opérateurs hérités de la classe spmatrix
__add__, __eq__, __ge__, __gt__, __iadd__, __isub__, __le__, __lt__, __matmul__, __mul__, __ne__, __pow__, __radd__, __rmul__, __rsub__, __rtruediv__, __sub__, __truediv__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
__repr__(self) |
|
count_nonzero(self) |
Number of non-zero entries, equivalent to [extrait de count_nonzero.__doc__] |
diagonal(self, k=0) |
Returns the kth diagonal of the matrix. [extrait de diagonal.__doc__] |
getnnz(self, axis=None) |
Number of stored values, including explicit zeros. [extrait de getnnz.__doc__] |
resize(self, *shape) |
Resize the matrix in-place to dimensions given by ``shape`` [extrait de resize.__doc__] |
sum(self, axis=None, dtype=None, out=None) |
|
tocoo(self, copy=False) |
Convert this matrix to COOrdinate format. [extrait de tocoo.__doc__] |
tocsc(self, copy=False) |
Convert this matrix to Compressed Sparse Column format. [extrait de tocsc.__doc__] |
todia(self, copy=False) |
Convert this matrix to sparse DIAgonal format. [extrait de todia.__doc__] |
transpose(self, axes=None, copy=False) |
|
Méthodes héritées de la classe _data_matrix
__abs__, __init_subclass__, __round__, __subclasshook__, astype, conj, copy, power
Méthodes héritées de la classe spmatrix
__bool__, __div__, __getattr__, __idiv__, __iter__, __len__, __nonzero__, __rdiv__, __rmatmul__, __str__, asformat, asfptype, conjugate, dot, get_shape, getcol, getformat, getH, getmaxprint, getrow, maximum, mean, minimum, multiply, nonzero, reshape, set_shape, setdiag, toarray, tobsr, tocsr, todense, todok, tolil
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__hash__,
__reduce__,
__reduce_ex__,
__setattr__,
__sizeof__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :