Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Module « scipy.sparse »
Signature de la fonction rand
def rand(m, n, density=0.01, format='coo', dtype=None, rng=None)
Description
help(scipy.sparse.rand)
Generate a sparse matrix of the given shape and density with uniformly
distributed values.
.. warning::
This function returns a sparse matrix -- not a sparse array.
You are encouraged to use ``random_array`` to take advantage
of the sparse array functionality.
Parameters
----------
m, n : int
shape of the matrix
density : real, optional
density of the generated matrix: density equal to one means a full
matrix, density of 0 means a matrix with no non-zero items.
format : str, optional
sparse matrix format.
dtype : dtype, optional
type of the returned matrix values.
rng : {None, int, `numpy.random.Generator`}, optional
If `rng` is passed by keyword, types other than `numpy.random.Generator` are
passed to `numpy.random.default_rng` to instantiate a ``Generator``.
If `rng` is already a ``Generator`` instance, then the provided instance is
used. Specify `rng` for repeatable function behavior.
If this argument is passed by position or `random_state` is passed by keyword,
legacy behavior for the argument `random_state` applies:
- If `random_state` is None (or `numpy.random`), the `numpy.random.RandomState`
singleton is used.
- If `random_state` is an int, a new ``RandomState`` instance is used,
seeded with `random_state`.
- If `random_state` is already a ``Generator`` or ``RandomState`` instance then
that instance is used.
.. versionchanged:: 1.15.0
As part of the `SPEC-007 <https://scientific-python.org/specs/spec-0007/>`_
transition from use of `numpy.random.RandomState` to
`numpy.random.Generator`, this keyword was changed from `random_state` to `rng`.
For an interim period, both keywords will continue to work, although only one
may be specified at a time. After the interim period, function calls using the
`random_state` keyword will emit warnings. The behavior of both `random_state` and
`rng` are outlined above, but only the `rng` keyword should be used in new code.
Returns
-------
res : sparse matrix
See Also
--------
:func:`random`
Similar function allowing a custom random data sampler
:func:`random_array`
Similar to random() but returns a sparse array
Notes
-----
Only float types are supported for now.
Examples
--------
>>> from scipy.sparse import rand
>>> matrix = rand(3, 4, density=0.25, format="csr", rng=42)
>>> matrix
<Compressed Sparse Row sparse matrix of dtype 'float64'
with 3 stored elements and shape (3, 4)>
>>> matrix.toarray()
array([[0.05641158, 0. , 0. , 0.65088847], # random
[0. , 0. , 0. , 0.14286682],
[0. , 0. , 0. , 0. ]])
Vous êtes un professionnel et vous avez besoin d'une formation ?
Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :