Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.sparse »

Fonction rand - module scipy.sparse

Signature de la fonction rand

def rand(m, n, density=0.01, format='coo', dtype=None, random_state=None) 

Description

rand.__doc__

Generate a sparse matrix of the given shape and density with uniformly
    distributed values.

    Parameters
    ----------
    m, n : int
        shape of the matrix
    density : real, optional
        density of the generated matrix: density equal to one means a full
        matrix, density of 0 means a matrix with no non-zero items.
    format : str, optional
        sparse matrix format.
    dtype : dtype, optional
        type of the returned matrix values.
    random_state : {None, int, `numpy.random.Generator`,
                    `numpy.random.RandomState`}, optional

        If `seed` is None (or `np.random`), the `numpy.random.RandomState`
        singleton is used.
        If `seed` is an int, a new ``RandomState`` instance is used,
        seeded with `seed`.
        If `seed` is already a ``Generator`` or ``RandomState`` instance then
        that instance is used.

    Returns
    -------
    res : sparse matrix

    Notes
    -----
    Only float types are supported for now.

    See Also
    --------
    scipy.sparse.random : Similar function that allows a user-specified random
        data source.

    Examples
    --------
    >>> from scipy.sparse import rand
    >>> matrix = rand(3, 4, density=0.25, format="csr", random_state=42)
    >>> matrix
    <3x4 sparse matrix of type '<class 'numpy.float64'>'
       with 3 stored elements in Compressed Sparse Row format>
    >>> matrix.todense()
    matrix([[0.05641158, 0.        , 0.        , 0.65088847],
            [0.        , 0.        , 0.        , 0.14286682],
            [0.        , 0.        , 0.        , 0.        ]])