Vous êtes un professionnel et vous avez besoin d'une formation ?
Calcul scientifique
avec Python
Voir le programme détaillé
Module « scipy.sparse »
Signature de la fonction random
def random(m, n, density=0.01, format='coo', dtype=None, rng=None, data_rvs=None)
Description
help(scipy.sparse.random)
Generate a sparse matrix of the given shape and density with randomly
distributed values.
.. warning::
This function returns a sparse matrix -- not a sparse array.
You are encouraged to use ``random_array`` to take advantage of the
sparse array functionality.
Parameters
----------
m, n : int
shape of the matrix
density : real, optional
density of the generated matrix: density equal to one means a full
matrix, density of 0 means a matrix with no non-zero items.
format : str, optional
sparse matrix format.
dtype : dtype, optional
type of the returned matrix values.
rng : {None, int, `numpy.random.Generator`}, optional
If `rng` is passed by keyword, types other than `numpy.random.Generator` are
passed to `numpy.random.default_rng` to instantiate a ``Generator``.
If `rng` is already a ``Generator`` instance, then the provided instance is
used. Specify `rng` for repeatable function behavior.
If this argument is passed by position or `random_state` is passed by keyword,
legacy behavior for the argument `random_state` applies:
- If `random_state` is None (or `numpy.random`), the `numpy.random.RandomState`
singleton is used.
- If `random_state` is an int, a new ``RandomState`` instance is used,
seeded with `random_state`.
- If `random_state` is already a ``Generator`` or ``RandomState`` instance then
that instance is used.
.. versionchanged:: 1.15.0
As part of the `SPEC-007 <https://scientific-python.org/specs/spec-0007/>`_
transition from use of `numpy.random.RandomState` to
`numpy.random.Generator`, this keyword was changed from `random_state` to `rng`.
For an interim period, both keywords will continue to work, although only one
may be specified at a time. After the interim period, function calls using the
`random_state` keyword will emit warnings. The behavior of both `random_state` and
`rng` are outlined above, but only the `rng` keyword should be used in new code.
This random state will be used for sampling the sparsity structure, but
not necessarily for sampling the values of the structurally nonzero
entries of the matrix.
data_rvs : callable, optional
Samples a requested number of random values.
This function should take a single argument specifying the length
of the ndarray that it will return. The structurally nonzero entries
of the sparse random matrix will be taken from the array sampled
by this function. By default, uniform [0, 1) random values will be
sampled using the same random state as is used for sampling
the sparsity structure.
Returns
-------
res : sparse matrix
See Also
--------
:func:`random_array`
constructs sparse arrays instead of sparse matrices
Examples
--------
Passing a ``np.random.Generator`` instance for better performance:
>>> import scipy as sp
>>> import numpy as np
>>> rng = np.random.default_rng()
>>> S = sp.sparse.random(3, 4, density=0.25, rng=rng)
Providing a sampler for the values:
>>> rvs = sp.stats.poisson(25, loc=10).rvs
>>> S = sp.sparse.random(3, 4, density=0.25, rng=rng, data_rvs=rvs)
>>> S.toarray()
array([[ 36., 0., 33., 0.], # random
[ 0., 0., 0., 0.],
[ 0., 0., 36., 0.]])
Building a custom distribution.
This example builds a squared normal from np.random:
>>> def np_normal_squared(size=None, rng=rng):
... return rng.standard_normal(size) ** 2
>>> S = sp.sparse.random(3, 4, density=0.25, rng=rng,
... data_rvs=np_normal_squared)
Or we can build it from sp.stats style rvs functions:
>>> def sp_stats_normal_squared(size=None, rng=rng):
... std_normal = sp.stats.distributions.norm_gen().rvs
... return std_normal(size=size, random_state=rng) ** 2
>>> S = sp.sparse.random(3, 4, density=0.25, rng=rng,
... data_rvs=sp_stats_normal_squared)
Or we can subclass sp.stats rv_continuous or rv_discrete:
>>> class NormalSquared(sp.stats.rv_continuous):
... def _rvs(self, size=None, random_state=rng):
... return rng.standard_normal(size) ** 2
>>> X = NormalSquared()
>>> Y = X() # get a frozen version of the distribution
>>> S = sp.sparse.random(3, 4, density=0.25, rng=rng, data_rvs=Y.rvs)
Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :