Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Module « scipy.sparse »
Classe « coo_array »
Informations générales
Héritage
builtins.object
sparray
builtins.object
_minmax_mixin
builtins.object
_spbase
_data_matrix
_coo_base
coo_array
Définition
class coo_array(_coo_base, sparray):
help(coo_array)
A sparse array in COOrdinate format.
Also known as the 'ijv' or 'triplet' format.
This can be instantiated in several ways:
coo_array(D)
where D is an ndarray
coo_array(S)
with another sparse array or matrix S (equivalent to S.tocoo())
coo_array(shape, [dtype])
to construct an empty sparse array with shape `shape`
dtype is optional, defaulting to dtype='d'.
coo_array((data, coords), [shape])
to construct from existing data and index arrays:
1. data[:] the entries of the sparse array, in any order
2. coords[i][:] the axis-i coordinates of the data entries
Where ``A[coords] = data``, and coords is a tuple of index arrays.
When shape is not specified, it is inferred from the index arrays.
Attributes
----------
dtype : dtype
Data type of the sparse array
shape : tuple of integers
Shape of the sparse array
ndim : int
Number of dimensions of the sparse array
nnz
size
data
COO format data array of the sparse array
coords
COO format tuple of index arrays
has_canonical_format : bool
Whether the matrix has sorted coordinates and no duplicates
format
T
Notes
-----
Sparse arrays can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Advantages of the COO format
- facilitates fast conversion among sparse formats
- permits duplicate entries (see example)
- very fast conversion to and from CSR/CSC formats
Disadvantages of the COO format
- does not directly support:
+ arithmetic operations
+ slicing
Intended Usage
- COO is a fast format for constructing sparse arrays
- Once a COO array has been constructed, convert to CSR or
CSC format for fast arithmetic and matrix vector operations
- By default when converting to CSR or CSC format, duplicate (i,j)
entries will be summed together. This facilitates efficient
construction of finite element matrices and the like. (see example)
Canonical format
- Entries and coordinates sorted by row, then column.
- There are no duplicate entries (i.e. duplicate (i,j) locations)
- Data arrays MAY have explicit zeros.
Examples
--------
>>> # Constructing an empty sparse array
>>> import numpy as np
>>> from scipy.sparse import coo_array
>>> coo_array((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> # Constructing a sparse array using ijv format
>>> row = np.array([0, 3, 1, 0])
>>> col = np.array([0, 3, 1, 2])
>>> data = np.array([4, 5, 7, 9])
>>> coo_array((data, (row, col)), shape=(4, 4)).toarray()
array([[4, 0, 9, 0],
[0, 7, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 5]])
>>> # Constructing a sparse array with duplicate coordinates
>>> row = np.array([0, 0, 1, 3, 1, 0, 0])
>>> col = np.array([0, 2, 1, 3, 1, 0, 0])
>>> data = np.array([1, 1, 1, 1, 1, 1, 1])
>>> coo = coo_array((data, (row, col)), shape=(4, 4))
>>> # Duplicate coordinates are maintained until implicitly or explicitly summed
>>> np.max(coo.data)
1
>>> coo.toarray()
array([[3, 0, 1, 0],
[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])
Constructeur(s)
Liste des propriétés
col | |
dtype | |
format | Format string for matrix. [extrait de format.__doc__] |
imag | |
ndim | |
nnz | Number of stored values, including explicit zeros. [extrait de nnz.__doc__] |
real | |
row | |
shape | |
size | Number of stored values. [extrait de size.__doc__] |
T | Transpose. [extrait de T.__doc__] |
Liste des opérateurs
Opérateurs hérités de la classe _data_matrix
__imul__, __itruediv__, __neg__
Liste des opérateurs
Opérateurs hérités de la classe _spbase
__add__, __eq__, __ge__, __gt__, __iadd__, __isub__, __le__, __lt__, __matmul__, __mul__, __ne__, __pow__, __radd__, __rmul__, __rsub__, __rtruediv__, __sub__, __truediv__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
Méthodes héritées de la classe sparray
__init_subclass__, __subclasshook__
Méthodes héritées de la classe _coo_base
count_nonzero, diagonal, dot, eliminate_zeros, reshape, resize, sum_duplicates, tensordot, toarray, tocoo, tocsc, tocsr, todia, todok, transpose
Méthodes héritées de la classe _minmax_mixin
argmax, argmin, max, min, nanmax, nanmin
Méthodes héritées de la classe _data_matrix
__abs__, __round__, astype, conjugate, copy, power
Méthodes héritées de la classe _spbase
__bool__, __div__, __idiv__, __iter__, __len__, __nonzero__, __rdiv__, __repr__, __rmatmul__, __str__, asformat, conj, maximum, mean, minimum, multiply, nonzero, setdiag, sum, tobsr, todense, tolil, trace
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__getstate__,
__hash__,
__reduce__,
__reduce_ex__,
__setattr__,
__sizeof__
Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :