Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.sparse »

Classe « coo_matrix »

Informations générales

Héritage

    builtins.object
        _minmax_mixin
builtins.object
    spmatrix
        _data_matrix
            coo_matrix

Définition

class coo_matrix(_data_matrix, _minmax_mixin):

Description [extrait de coo_matrix.__doc__]

    A sparse matrix in COOrdinate format.

    Also known as the 'ijv' or 'triplet' format.

    This can be instantiated in several ways:
        coo_matrix(D)
            with a dense matrix D

        coo_matrix(S)
            with another sparse matrix S (equivalent to S.tocoo())

        coo_matrix((M, N), [dtype])
            to construct an empty matrix with shape (M, N)
            dtype is optional, defaulting to dtype='d'.

        coo_matrix((data, (i, j)), [shape=(M, N)])
            to construct from three arrays:
                1. data[:]   the entries of the matrix, in any order
                2. i[:]      the row indices of the matrix entries
                3. j[:]      the column indices of the matrix entries

            Where ``A[i[k], j[k]] = data[k]``.  When shape is not
            specified, it is inferred from the index arrays

    Attributes
    ----------
    dtype : dtype
        Data type of the matrix
    shape : 2-tuple
        Shape of the matrix
    ndim : int
        Number of dimensions (this is always 2)
    nnz
        Number of stored values, including explicit zeros
    data
        COO format data array of the matrix
    row
        COO format row index array of the matrix
    col
        COO format column index array of the matrix

    Notes
    -----

    Sparse matrices can be used in arithmetic operations: they support
    addition, subtraction, multiplication, division, and matrix power.

    Advantages of the COO format
        - facilitates fast conversion among sparse formats
        - permits duplicate entries (see example)
        - very fast conversion to and from CSR/CSC formats

    Disadvantages of the COO format
        - does not directly support:
            + arithmetic operations
            + slicing

    Intended Usage
        - COO is a fast format for constructing sparse matrices
        - Once a matrix has been constructed, convert to CSR or
          CSC format for fast arithmetic and matrix vector operations
        - By default when converting to CSR or CSC format, duplicate (i,j)
          entries will be summed together.  This facilitates efficient
          construction of finite element matrices and the like. (see example)

    Examples
    --------

    >>> # Constructing an empty matrix
    >>> from scipy.sparse import coo_matrix
    >>> coo_matrix((3, 4), dtype=np.int8).toarray()
    array([[0, 0, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 0]], dtype=int8)

    >>> # Constructing a matrix using ijv format
    >>> row  = np.array([0, 3, 1, 0])
    >>> col  = np.array([0, 3, 1, 2])
    >>> data = np.array([4, 5, 7, 9])
    >>> coo_matrix((data, (row, col)), shape=(4, 4)).toarray()
    array([[4, 0, 9, 0],
           [0, 7, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 5]])

    >>> # Constructing a matrix with duplicate indices
    >>> row  = np.array([0, 0, 1, 3, 1, 0, 0])
    >>> col  = np.array([0, 2, 1, 3, 1, 0, 0])
    >>> data = np.array([1, 1, 1, 1, 1, 1, 1])
    >>> coo = coo_matrix((data, (row, col)), shape=(4, 4))
    >>> # Duplicate indices are maintained until implicitly or explicitly summed
    >>> np.max(coo.data)
    1
    >>> coo.toarray()
    array([[3, 0, 1, 0],
           [0, 2, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 1]])

    

Constructeur(s)

Signature du constructeur Description
__init__(self, arg1, shape=None, dtype=None, copy=False)

Liste des attributs statiques

Nom de l'attribut Valeur
formatcoo
ndim2

Liste des propriétés

Nom de la propriétéDescription
dtype
nnzNumber of stored values, including explicit zeros. [extrait de __doc__]
shapeGet shape of a matrix. [extrait de __doc__]

Liste des opérateurs

Opérateurs hérités de la classe _data_matrix

__imul__, __itruediv__, __neg__

Liste des opérateurs

Opérateurs hérités de la classe spmatrix

__add__, __eq__, __ge__, __gt__, __iadd__, __isub__, __le__, __lt__, __matmul__, __mul__, __ne__, __pow__, __radd__, __rmul__, __rsub__, __rtruediv__, __sub__, __truediv__

Liste des méthodes

Toutes les méthodes Méthodes d'instance Méthodes statiques Méthodes dépréciées
Signature de la méthodeDescription
diagonal(self, k=0) Returns the kth diagonal of the matrix. [extrait de diagonal.__doc__]
eliminate_zeros(self) Remove zero entries from the matrix [extrait de eliminate_zeros.__doc__]
getnnz(self, axis=None) Number of stored values, including explicit zeros. [extrait de getnnz.__doc__]
reshape(self, *args, **kwargs) reshape(self, shape, order='C', copy=False) [extrait de reshape.__doc__]
resize(self, *shape) Resize the matrix in-place to dimensions given by ``shape`` [extrait de resize.__doc__]
sum_duplicates(self) Eliminate duplicate matrix entries by adding them together [extrait de sum_duplicates.__doc__]
toarray(self, order=None, out=None) See the docstring for `spmatrix.toarray`. [extrait de toarray.__doc__]
tocoo(self, copy=False) Convert this matrix to COOrdinate format. [extrait de tocoo.__doc__]
tocsc(self, copy=False) Convert this matrix to Compressed Sparse Column format [extrait de tocsc.__doc__]
tocsr(self, copy=False) Convert this matrix to Compressed Sparse Row format [extrait de tocsr.__doc__]
todia(self, copy=False) Convert this matrix to sparse DIAgonal format. [extrait de todia.__doc__]
todok(self, copy=False) Convert this matrix to Dictionary Of Keys format. [extrait de todok.__doc__]
transpose(self, axes=None, copy=False)

Méthodes héritées de la classe _minmax_mixin

__init_subclass__, __subclasshook__, argmax, argmin, max, min

Méthodes héritées de la classe _data_matrix

__abs__, __round__, astype, conj, copy, count_nonzero, power

Méthodes héritées de la classe spmatrix

__bool__, __div__, __getattr__, __idiv__, __iter__, __len__, __nonzero__, __rdiv__, __repr__, __rmatmul__, __str__, asformat, asfptype, conjugate, dot, get_shape, getcol, getformat, getH, getmaxprint, getrow, maximum, mean, minimum, multiply, nonzero, set_shape, setdiag, sum, tobsr, todense, tolil

Méthodes héritées de la classe object

__delattr__, __dir__, __format__, __getattribute__, __hash__, __reduce__, __reduce_ex__, __setattr__, __sizeof__