Vous êtes un professionnel et vous avez besoin d'une formation ?
Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Module « scipy.sparse »
Signature de la fonction triu
def triu(A, k=0, format=None)
Description
help(scipy.sparse.triu)
Return the upper triangular portion of a sparse array or matrix
Returns the elements on or above the k-th diagonal of A.
- k = 0 corresponds to the main diagonal
- k > 0 is above the main diagonal
- k < 0 is below the main diagonal
Parameters
----------
A : dense or sparse array or matrix
Matrix whose upper trianglar portion is desired.
k : integer : optional
The bottom-most diagonal of the upper triangle.
format : string
Sparse format of the result, e.g. format="csr", etc.
Returns
-------
L : sparse array or matrix
Upper triangular portion of A in sparse format.
Sparse array if A is a sparse array, otherwise matrix.
See Also
--------
tril : lower triangle in sparse format
Examples
--------
>>> from scipy.sparse import csr_array, triu
>>> A = csr_array([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
... dtype='int32')
>>> A.toarray()
array([[1, 2, 0, 0, 3],
[4, 5, 0, 6, 7],
[0, 0, 8, 9, 0]], dtype=int32)
>>> triu(A).toarray()
array([[1, 2, 0, 0, 3],
[0, 5, 0, 6, 7],
[0, 0, 8, 9, 0]], dtype=int32)
>>> triu(A).nnz
8
>>> triu(A, k=1).toarray()
array([[0, 2, 0, 0, 3],
[0, 0, 0, 6, 7],
[0, 0, 0, 9, 0]], dtype=int32)
>>> triu(A, k=-1).toarray()
array([[1, 2, 0, 0, 3],
[4, 5, 0, 6, 7],
[0, 0, 8, 9, 0]], dtype=int32)
>>> triu(A, format='csc')
<Compressed Sparse Column sparse array of dtype 'int32'
with 8 stored elements and shape (3, 5)>
Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :