Module « scipy.sparse »
Classe « csr_matrix »
Informations générales
Héritage
builtins.object
IndexMixin
builtins.object
_minmax_mixin
builtins.object
spmatrix
_data_matrix
_cs_matrix
csr_matrix
Définition
class csr_matrix(_cs_matrix):
Description [extrait de csr_matrix.__doc__]
Compressed Sparse Row matrix
This can be instantiated in several ways:
csr_matrix(D)
with a dense matrix or rank-2 ndarray D
csr_matrix(S)
with another sparse matrix S (equivalent to S.tocsr())
csr_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.
csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where ``data``, ``row_ind`` and ``col_ind`` satisfy the
relationship ``a[row_ind[k], col_ind[k]] = data[k]``.
csr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for
row i are stored in ``indices[indptr[i]:indptr[i+1]]`` and their
corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``.
If the shape parameter is not supplied, the matrix dimensions
are inferred from the index arrays.
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
Number of stored values, including explicit zeros
data
CSR format data array of the matrix
indices
CSR format index array of the matrix
indptr
CSR format index pointer array of the matrix
has_sorted_indices
Whether indices are sorted
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Advantages of the CSR format
- efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
- efficient row slicing
- fast matrix vector products
Disadvantages of the CSR format
- slow column slicing operations (consider CSC)
- changes to the sparsity structure are expensive (consider LIL or DOK)
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
Duplicate entries are summed together:
>>> row = np.array([0, 1, 2, 0])
>>> col = np.array([0, 1, 1, 0])
>>> data = np.array([1, 2, 4, 8])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[9, 0, 0],
[0, 2, 0],
[0, 4, 0]])
As an example of how to construct a CSR matrix incrementally,
the following snippet builds a term-document matrix from texts:
>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
... for term in d:
... index = vocabulary.setdefault(term, len(vocabulary))
... indices.append(index)
... data.append(1)
... indptr.append(len(indices))
...
>>> csr_matrix((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
[0, 1, 1, 1]])
Liste des attributs statiques
Liste des propriétés
dtype | |
has_canonical_format | Determine whether the matrix has sorted indices and no duplicates [extrait de __doc__] |
has_sorted_indices | Determine whether the matrix has sorted indices [extrait de __doc__] |
nnz | Number of stored values, including explicit zeros. [extrait de __doc__] |
shape | Get shape of a matrix. [extrait de __doc__] |
Liste des opérateurs
Opérateurs hérités de la classe _cs_matrix
__eq__, __ge__, __gt__, __le__, __lt__, __ne__
Liste des opérateurs
Opérateurs hérités de la classe IndexMixin
__getitem__, __setitem__
Liste des opérateurs
Opérateurs hérités de la classe _data_matrix
__imul__, __itruediv__, __neg__
Liste des opérateurs
Opérateurs hérités de la classe spmatrix
__add__, __iadd__, __isub__, __matmul__, __mul__, __pow__, __radd__, __rmul__, __rsub__, __rtruediv__, __sub__, __truediv__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
__iter__(self) |
|
getcol(self, i) |
Returns a copy of column i of the matrix, as a (m x 1) [extrait de getcol.__doc__] |
getrow(self, i) |
Returns a copy of row i of the matrix, as a (1 x n) [extrait de getrow.__doc__] |
tobsr(self, blocksize=None, copy=True) |
Convert this matrix to Block Sparse Row format. [extrait de tobsr.__doc__] |
tocsc(self, copy=False) |
Convert this matrix to Compressed Sparse Column format. [extrait de tocsc.__doc__] |
tocsr(self, copy=False) |
Convert this matrix to Compressed Sparse Row format. [extrait de tocsr.__doc__] |
tolil(self, copy=False) |
Convert this matrix to List of Lists format. [extrait de tolil.__doc__] |
transpose(self, axes=None, copy=False) |
|
Méthodes héritées de la classe _cs_matrix
__init_subclass__, __subclasshook__, check_format, diagonal, eliminate_zeros, getnnz, maximum, minimum, multiply, prune, resize, sort_indices, sorted_indices, sum, sum_duplicates, toarray, tocoo
Méthodes héritées de la classe _minmax_mixin
argmax, argmin, max, min
Méthodes héritées de la classe _data_matrix
__abs__, __round__, astype, conj, copy, count_nonzero, power
Méthodes héritées de la classe spmatrix
__bool__, __div__, __getattr__, __idiv__, __len__, __nonzero__, __rdiv__, __repr__, __rmatmul__, __str__, asformat, asfptype, conjugate, dot, get_shape, getformat, getH, getmaxprint, mean, nonzero, reshape, set_shape, setdiag, todense, todia, todok
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__hash__,
__reduce__,
__reduce_ex__,
__setattr__,
__sizeof__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :