Module « scipy.sparse »
Classe « bsr_matrix »
Informations générales
Héritage
builtins.object
_minmax_mixin
builtins.object
IndexMixin
builtins.object
_minmax_mixin
builtins.object
spmatrix
_data_matrix
_cs_matrix
bsr_matrix
Définition
class bsr_matrix(_cs_matrix, _minmax_mixin):
Description [extrait de bsr_matrix.__doc__]
Block Sparse Row matrix
This can be instantiated in several ways:
bsr_matrix(D, [blocksize=(R,C)])
where D is a dense matrix or 2-D ndarray.
bsr_matrix(S, [blocksize=(R,C)])
with another sparse matrix S (equivalent to S.tobsr())
bsr_matrix((M, N), [blocksize=(R,C), dtype])
to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.
bsr_matrix((data, ij), [blocksize=(R,C), shape=(M, N)])
where ``data`` and ``ij`` satisfy ``a[ij[0, k], ij[1, k]] = data[k]``
bsr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard BSR representation where the block column
indices for row i are stored in ``indices[indptr[i]:indptr[i+1]]``
and their corresponding block values are stored in
``data[ indptr[i]: indptr[i+1] ]``. If the shape parameter is not
supplied, the matrix dimensions are inferred from the index arrays.
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
Number of stored values, including explicit zeros
data
Data array of the matrix
indices
BSR format index array
indptr
BSR format index pointer array
blocksize
Block size of the matrix
has_sorted_indices
Whether indices are sorted
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
**Summary of BSR format**
The Block Compressed Row (BSR) format is very similar to the Compressed
Sparse Row (CSR) format. BSR is appropriate for sparse matrices with dense
sub matrices like the last example below. Block matrices often arise in
vector-valued finite element discretizations. In such cases, BSR is
considerably more efficient than CSR and CSC for many sparse arithmetic
operations.
**Blocksize**
The blocksize (R,C) must evenly divide the shape of the matrix (M,N).
That is, R and C must satisfy the relationship ``M % R = 0`` and
``N % C = 0``.
If no blocksize is specified, a simple heuristic is applied to determine
an appropriate blocksize.
Examples
--------
>>> from scipy.sparse import bsr_matrix
>>> bsr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3 ,4, 5, 6])
>>> bsr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6]).repeat(4).reshape(6, 2, 2)
>>> bsr_matrix((data,indices,indptr), shape=(6, 6)).toarray()
array([[1, 1, 0, 0, 2, 2],
[1, 1, 0, 0, 2, 2],
[0, 0, 0, 0, 3, 3],
[0, 0, 0, 0, 3, 3],
[4, 4, 5, 5, 6, 6],
[4, 4, 5, 5, 6, 6]])
Constructeur(s)
Liste des attributs statiques
Liste des propriétés
blocksize | |
dtype | |
has_canonical_format | Determine whether the matrix has sorted indices and no duplicates [extrait de __doc__] |
has_sorted_indices | Determine whether the matrix has sorted indices [extrait de __doc__] |
nnz | Number of stored values, including explicit zeros. [extrait de __doc__] |
shape | Get shape of a matrix. [extrait de __doc__] |
Opérateurs hérités de la classe _cs_matrix
__eq__, __ge__, __gt__, __le__, __lt__, __ne__
Opérateurs hérités de la classe _data_matrix
__imul__, __itruediv__, __neg__
Opérateurs hérités de la classe spmatrix
__add__, __iadd__, __isub__, __matmul__, __mul__, __pow__, __radd__, __rmul__, __rsub__, __rtruediv__, __sub__, __truediv__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
__repr__(self) |
|
check_format(self, full_check=True) |
check whether the matrix format is valid [extrait de check_format.__doc__] |
diagonal(self, k=0) |
Returns the kth diagonal of the matrix. [extrait de diagonal.__doc__] |
eliminate_zeros(self) |
Remove zero elements in-place. [extrait de eliminate_zeros.__doc__] |
getnnz(self, axis=None) |
Number of stored values, including explicit zeros. [extrait de getnnz.__doc__] |
prune(self) |
Remove empty space after all non-zero elements. [extrait de prune.__doc__] |
sort_indices(self) |
Sort the indices of this matrix *in place* [extrait de sort_indices.__doc__] |
sum_duplicates(self) |
Eliminate duplicate matrix entries by adding them together [extrait de sum_duplicates.__doc__] |
toarray(self, order=None, out=None) |
|
tobsr(self, blocksize=None, copy=False) |
Convert this matrix into Block Sparse Row Format. [extrait de tobsr.__doc__] |
tocoo(self, copy=True) |
Convert this matrix to COOrdinate format. [extrait de tocoo.__doc__] |
tocsc(self, copy=False) |
Convert this matrix to Compressed Sparse Column format. [extrait de tocsc.__doc__] |
tocsr(self, copy=False) |
Convert this matrix to Compressed Sparse Row format. [extrait de tocsr.__doc__] |
transpose(self, axes=None, copy=False) |
|
Méthodes héritées de la classe _cs_matrix
__init_subclass__, __subclasshook__, maximum, minimum, multiply, resize, sorted_indices, sum
Méthodes héritées de la classe IndexMixin
getcol, getrow
Méthodes héritées de la classe _minmax_mixin
argmax, argmin, max, min
Méthodes héritées de la classe _data_matrix
__abs__, __round__, astype, conj, copy, count_nonzero, power
Méthodes héritées de la classe spmatrix
__bool__, __div__, __getattr__, __idiv__, __iter__, __len__, __nonzero__, __rdiv__, __rmatmul__, __str__, asformat, asfptype, conjugate, dot, get_shape, getformat, getH, getmaxprint, mean, nonzero, reshape, set_shape, setdiag, todense, todia, todok, tolil
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__hash__,
__reduce__,
__reduce_ex__,
__setattr__,
__sizeof__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :