Module « scipy.fft »
Signature de la fonction rfft
def rfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *, plan=None)
Description
rfft.__doc__
Compute the 1-D discrete Fourier Transform for real input.
This function computes the 1-D *n*-point discrete Fourier
Transform (DFT) of a real-valued array by means of an efficient algorithm
called the Fast Fourier Transform (FFT).
Parameters
----------
x : array_like
Input array
n : int, optional
Number of points along transformation axis in the input to use.
If `n` is smaller than the length of the input, the input is cropped.
If it is larger, the input is padded with zeros. If `n` is not given,
the length of the input along the axis specified by `axis` is used.
axis : int, optional
Axis over which to compute the FFT. If not given, the last axis is
used.
norm : {"backward", "ortho", "forward"}, optional
Normalization mode (see `fft`). Default is "backward".
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
See :func:`fft` for more details.
workers : int, optional
Maximum number of workers to use for parallel computation. If negative,
the value wraps around from ``os.cpu_count()``.
See :func:`~scipy.fft.fft` for more details.
plan : object, optional
This argument is reserved for passing in a precomputed plan provided
by downstream FFT vendors. It is currently not used in SciPy.
.. versionadded:: 1.5.0
Returns
-------
out : complex ndarray
The truncated or zero-padded input, transformed along the axis
indicated by `axis`, or the last one if `axis` is not specified.
If `n` is even, the length of the transformed axis is ``(n/2)+1``.
If `n` is odd, the length is ``(n+1)/2``.
Raises
------
IndexError
If `axis` is larger than the last axis of `a`.
See Also
--------
irfft : The inverse of `rfft`.
fft : The 1-D FFT of general (complex) input.
fftn : The N-D FFT.
rfft2 : The 2-D FFT of real input.
rfftn : The N-D FFT of real input.
Notes
-----
When the DFT is computed for purely real input, the output is
Hermitian-symmetric, i.e., the negative frequency terms are just the complex
conjugates of the corresponding positive-frequency terms, and the
negative-frequency terms are therefore redundant. This function does not
compute the negative frequency terms, and the length of the transformed
axis of the output is therefore ``n//2 + 1``.
When ``X = rfft(x)`` and fs is the sampling frequency, ``X[0]`` contains
the zero-frequency term 0*fs, which is real due to Hermitian symmetry.
If `n` is even, ``A[-1]`` contains the term representing both positive
and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely
real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains
the largest positive frequency (fs/2*(n-1)/n), and is complex in the
general case.
If the input `a` contains an imaginary part, it is silently discarded.
Examples
--------
>>> import scipy.fft
>>> scipy.fft.fft([0, 1, 0, 0])
array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) # may vary
>>> scipy.fft.rfft([0, 1, 0, 0])
array([ 1.+0.j, 0.-1.j, -1.+0.j]) # may vary
Notice how the final element of the `fft` output is the complex conjugate
of the second element, for real input. For `rfft`, this symmetry is
exploited to compute only the non-negative frequency terms.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :