Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les fondamentaux
Voir le programme détaillé
Module « scipy.fft »

Fonction rfft - module scipy.fft

Signature de la fonction rfft

def rfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *, plan=None) 

Description

help(scipy.fft.rfft)

Compute the 1-D discrete Fourier Transform for real input.

This function computes the 1-D *n*-point discrete Fourier
Transform (DFT) of a real-valued array by means of an efficient algorithm
called the Fast Fourier Transform (FFT).

Parameters
----------
x : array_like
    Input array
n : int, optional
    Number of points along transformation axis in the input to use.
    If `n` is smaller than the length of the input, the input is cropped.
    If it is larger, the input is padded with zeros. If `n` is not given,
    the length of the input along the axis specified by `axis` is used.
axis : int, optional
    Axis over which to compute the FFT. If not given, the last axis is
    used.
norm : {"backward", "ortho", "forward"}, optional
    Normalization mode (see `fft`). Default is "backward".
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.
    See :func:`fft` for more details.
workers : int, optional
    Maximum number of workers to use for parallel computation. If negative,
    the value wraps around from ``os.cpu_count()``.
    See :func:`~scipy.fft.fft` for more details.
plan : object, optional
    This argument is reserved for passing in a precomputed plan provided
    by downstream FFT vendors. It is currently not used in SciPy.

    .. versionadded:: 1.5.0

Returns
-------
out : complex ndarray
    The truncated or zero-padded input, transformed along the axis
    indicated by `axis`, or the last one if `axis` is not specified.
    If `n` is even, the length of the transformed axis is ``(n/2)+1``.
    If `n` is odd, the length is ``(n+1)/2``.

Raises
------
IndexError
    If `axis` is larger than the last axis of `a`.

See Also
--------
irfft : The inverse of `rfft`.
fft : The 1-D FFT of general (complex) input.
fftn : The N-D FFT.
rfft2 : The 2-D FFT of real input.
rfftn : The N-D FFT of real input.

Notes
-----
When the DFT is computed for purely real input, the output is
Hermitian-symmetric, i.e., the negative frequency terms are just the complex
conjugates of the corresponding positive-frequency terms, and the
negative-frequency terms are therefore redundant. This function does not
compute the negative frequency terms, and the length of the transformed
axis of the output is therefore ``n//2 + 1``.

When ``X = rfft(x)`` and fs is the sampling frequency, ``X[0]`` contains
the zero-frequency term 0*fs, which is real due to Hermitian symmetry.

If `n` is even, ``A[-1]`` contains the term representing both positive
and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely
real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains
the largest positive frequency (fs/2*(n-1)/n), and is complex in the
general case.

If the input `a` contains an imaginary part, it is silently discarded.

Examples
--------
>>> import scipy.fft
>>> scipy.fft.fft([0, 1, 0, 0])
array([ 1.+0.j,  0.-1.j, -1.+0.j,  0.+1.j]) # may vary
>>> scipy.fft.rfft([0, 1, 0, 0])
array([ 1.+0.j,  0.-1.j, -1.+0.j]) # may vary

Notice how the final element of the `fft` output is the complex conjugate
of the second element, for real input. For `rfft`, this symmetry is
exploited to compute only the non-negative frequency terms.



Vous êtes un professionnel et vous avez besoin d'une formation ? Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé