Module « scipy.fft »
Signature de la fonction ihfft
def ihfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *, plan=None)
Description
ihfft.__doc__
Compute the inverse FFT of a signal that has Hermitian symmetry.
Parameters
----------
x : array_like
Input array.
n : int, optional
Length of the inverse FFT, the number of points along
transformation axis in the input to use. If `n` is smaller than
the length of the input, the input is cropped. If it is larger,
the input is padded with zeros. If `n` is not given, the length of
the input along the axis specified by `axis` is used.
axis : int, optional
Axis over which to compute the inverse FFT. If not given, the last
axis is used.
norm : {"backward", "ortho", "forward"}, optional
Normalization mode (see `fft`). Default is "backward".
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
See `fft` for more details.
workers : int, optional
Maximum number of workers to use for parallel computation. If negative,
the value wraps around from ``os.cpu_count()``.
See :func:`~scipy.fft.fft` for more details.
plan : object, optional
This argument is reserved for passing in a precomputed plan provided
by downstream FFT vendors. It is currently not used in SciPy.
.. versionadded:: 1.5.0
Returns
-------
out : complex ndarray
The truncated or zero-padded input, transformed along the axis
indicated by `axis`, or the last one if `axis` is not specified.
The length of the transformed axis is ``n//2 + 1``.
See Also
--------
hfft, irfft
Notes
-----
`hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
opposite case: here, the signal has Hermitian symmetry in the time
domain and is real in the frequency domain. So, here, it's `hfft`, for
which you must supply the length of the result if it is to be odd:
* even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error,
* odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error.
Examples
--------
>>> from scipy.fft import ifft, ihfft
>>> spectrum = np.array([ 15, -4, 0, -1, 0, -4])
>>> ifft(spectrum)
array([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.+0.j]) # may vary
>>> ihfft(spectrum)
array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) # may vary
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :