Module « scipy.fft »
Signature de la fonction dct
def dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False, workers=None)
Description
dct.__doc__
Return the Discrete Cosine Transform of arbitrary type sequence x.
Parameters
----------
x : array_like
The input array.
type : {1, 2, 3, 4}, optional
Type of the DCT (see Notes). Default type is 2.
n : int, optional
Length of the transform. If ``n < x.shape[axis]``, `x` is
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
default results in ``n = x.shape[axis]``.
axis : int, optional
Axis along which the dct is computed; the default is over the
last axis (i.e., ``axis=-1``).
norm : {"backward", "ortho", "forward"}, optional
Normalization mode (see Notes). Default is "backward".
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
workers : int, optional
Maximum number of workers to use for parallel computation. If negative,
the value wraps around from ``os.cpu_count()``.
See :func:`~scipy.fft.fft` for more details.
Returns
-------
y : ndarray of real
The transformed input array.
See Also
--------
idct : Inverse DCT
Notes
-----
For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to
MATLAB ``dct(x)``.
For ``norm="backward"``, there is no scaling on `dct` and the `idct` is
scaled by ``1/N`` where ``N`` is the "logical" size of the DCT. For
``norm="forward"`` the ``1/N`` normalization is applied to the forward
`dct` instead and the `idct` is unnormalized. For ``norm='ortho'`` both
directions are scaled by the same factor of ``1/sqrt(N)``.
There are, theoretically, 8 types of the DCT, only the first 4 types are
implemented in SciPy.'The' DCT generally refers to DCT type 2, and 'the'
Inverse DCT generally refers to DCT type 3.
**Type I**
There are several definitions of the DCT-I; we use the following
(for ``norm="backward"``)
.. math::
y_k = x_0 + (-1)^k x_{N-1} + 2 \sum_{n=1}^{N-2} x_n \cos\left(
\frac{\pi k n}{N-1} \right)
If ``norm='ortho'``, ``x[0]`` and ``x[N-1]`` are multiplied by a scaling
factor of :math:`\sqrt{2}`, and ``y[k]`` is multiplied by a scaling factor
``f``
.. math::
f = \begin{cases}
\frac{1}{2}\sqrt{\frac{1}{N-1}} & \text{if }k=0\text{ or }N-1, \\
\frac{1}{2}\sqrt{\frac{2}{N-1}} & \text{otherwise} \end{cases}
.. note::
The DCT-I is only supported for input size > 1.
**Type II**
There are several definitions of the DCT-II; we use the following
(for ``norm="backward"``)
.. math::
y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi k(2n+1)}{2N} \right)
If ``norm="ortho"``, ``y[k]`` is multiplied by a scaling factor ``f``
.. math::
f = \begin{cases}
\sqrt{\frac{1}{4N}} & \text{if }k=0, \\
\sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}
which makes the corresponding matrix of coefficients orthonormal
(``O @ O.T = np.eye(N)``).
**Type III**
There are several definitions, we use the following (for
``norm="backward"``)
.. math::
y_k = x_0 + 2 \sum_{n=1}^{N-1} x_n \cos\left(\frac{\pi(2k+1)n}{2N}\right)
or, for ``norm="ortho"``
.. math::
y_k = \frac{x_0}{\sqrt{N}} + \sqrt{\frac{2}{N}} \sum_{n=1}^{N-1} x_n
\cos\left(\frac{\pi(2k+1)n}{2N}\right)
The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
to a factor `2N`. The orthonormalized DCT-III is exactly the inverse of
the orthonormalized DCT-II.
**Type IV**
There are several definitions of the DCT-IV; we use the following
(for ``norm="backward"``)
.. math::
y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi(2k+1)(2n+1)}{4N} \right)
If ``norm="ortho"``, ``y[k]`` is multiplied by a scaling factor ``f``
.. math::
f = \frac{1}{\sqrt{2N}}
References
----------
.. [1] 'A Fast Cosine Transform in One and Two Dimensions', by J.
Makhoul, `IEEE Transactions on acoustics, speech and signal
processing` vol. 28(1), pp. 27-34,
:doi:`10.1109/TASSP.1980.1163351` (1980).
.. [2] Wikipedia, "Discrete cosine transform",
https://en.wikipedia.org/wiki/Discrete_cosine_transform
Examples
--------
The Type 1 DCT is equivalent to the FFT (though faster) for real,
even-symmetrical inputs. The output is also real and even-symmetrical.
Half of the FFT input is used to generate half of the FFT output:
>>> from scipy.fft import fft, dct
>>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
array([ 30., -8., 6., -2., 6., -8.])
>>> dct(np.array([4., 3., 5., 10.]), 1)
array([ 30., -8., 6., -2.])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :