Module « scipy.fft »
Signature de la fonction fftn
def fftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *, plan=None)
Description
fftn.__doc__
Compute the N-D discrete Fourier Transform.
This function computes the N-D discrete Fourier Transform over
any number of axes in an M-D array by means of the Fast Fourier
Transform (FFT).
Parameters
----------
x : array_like
Input array, can be complex.
s : sequence of ints, optional
Shape (length of each transformed axis) of the output
(``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
This corresponds to ``n`` for ``fft(x, n)``.
Along any axis, if the given shape is smaller than that of the input,
the input is cropped. If it is larger, the input is padded with zeros.
if `s` is not given, the shape of the input along the axes specified
by `axes` is used.
axes : sequence of ints, optional
Axes over which to compute the FFT. If not given, the last ``len(s)``
axes are used, or all axes if `s` is also not specified.
norm : {"backward", "ortho", "forward"}, optional
Normalization mode (see `fft`). Default is "backward".
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
See :func:`fft` for more details.
workers : int, optional
Maximum number of workers to use for parallel computation. If negative,
the value wraps around from ``os.cpu_count()``.
See :func:`~scipy.fft.fft` for more details.
plan : object, optional
This argument is reserved for passing in a precomputed plan provided
by downstream FFT vendors. It is currently not used in SciPy.
.. versionadded:: 1.5.0
Returns
-------
out : complex ndarray
The truncated or zero-padded input, transformed along the axes
indicated by `axes`, or by a combination of `s` and `x`,
as explained in the parameters section above.
Raises
------
ValueError
If `s` and `axes` have different length.
IndexError
If an element of `axes` is larger than than the number of axes of `x`.
See Also
--------
ifftn : The inverse of `fftn`, the inverse N-D FFT.
fft : The 1-D FFT, with definitions and conventions used.
rfftn : The N-D FFT of real input.
fft2 : The 2-D FFT.
fftshift : Shifts zero-frequency terms to centre of array.
Notes
-----
The output, analogously to `fft`, contains the term for zero frequency in
the low-order corner of all axes, the positive frequency terms in the
first half of all axes, the term for the Nyquist frequency in the middle
of all axes and the negative frequency terms in the second half of all
axes, in order of decreasingly negative frequency.
Examples
--------
>>> import scipy.fft
>>> x = np.mgrid[:3, :3, :3][0]
>>> scipy.fft.fftn(x, axes=(1, 2))
array([[[ 0.+0.j, 0.+0.j, 0.+0.j], # may vary
[ 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j]],
[[ 9.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j]],
[[18.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j]]])
>>> scipy.fft.fftn(x, (2, 2), axes=(0, 1))
array([[[ 2.+0.j, 2.+0.j, 2.+0.j], # may vary
[ 0.+0.j, 0.+0.j, 0.+0.j]],
[[-2.+0.j, -2.+0.j, -2.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j]]])
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,
... 2 * np.pi * np.arange(200) / 34)
>>> S = np.sin(X) + np.cos(Y) + rng.uniform(0, 1, X.shape)
>>> FS = scipy.fft.fftn(S)
>>> plt.imshow(np.log(np.abs(scipy.fft.fftshift(FS))**2))
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :