Module « scipy.fft »
Signature de la fonction ifht
def ifht(A, dln, mu, offset=0.0, bias=0.0)
Description
ifht.__doc__
Compute the inverse fast Hankel transform.
Computes the discrete inverse Hankel transform of a logarithmically spaced
periodic sequence. This is the inverse operation to `fht`.
Parameters
----------
A : array_like (..., n)
Real periodic input array, uniformly logarithmically spaced. For
multidimensional input, the transform is performed over the last axis.
dln : float
Uniform logarithmic spacing of the input array.
mu : float
Order of the Hankel transform, any positive or negative real number.
offset : float, optional
Offset of the uniform logarithmic spacing of the output array.
bias : float, optional
Exponent of power law bias, any positive or negative real number.
Returns
-------
a : array_like (..., n)
The transformed output array, which is real, periodic, uniformly
logarithmically spaced, and of the same shape as the input array.
See Also
--------
fht : Definition of the fast Hankel transform.
fhtoffset : Return an optimal offset for `ifht`.
Notes
-----
This function computes a discrete version of the Hankel transform
.. math::
a(r) = \int_{0}^{\infty} \! A(k) \, J_\mu(kr) \, r \, dk \;,
where :math:`J_\mu` is the Bessel function of order :math:`\mu`. The index
:math:`\mu` may be any real number, positive or negative.
See `fht` for further details.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :