Module « scipy.fft »
Signature de la fonction fht
def fht(a, dln, mu, offset=0.0, bias=0.0)
Description
fht.__doc__
Compute the fast Hankel transform.
Computes the discrete Hankel transform of a logarithmically spaced periodic
sequence using the FFTLog algorithm [1]_, [2]_.
Parameters
----------
a : array_like (..., n)
Real periodic input array, uniformly logarithmically spaced. For
multidimensional input, the transform is performed over the last axis.
dln : float
Uniform logarithmic spacing of the input array.
mu : float
Order of the Hankel transform, any positive or negative real number.
offset : float, optional
Offset of the uniform logarithmic spacing of the output array.
bias : float, optional
Exponent of power law bias, any positive or negative real number.
Returns
-------
A : array_like (..., n)
The transformed output array, which is real, periodic, uniformly
logarithmically spaced, and of the same shape as the input array.
See Also
--------
ifht : The inverse of `fht`.
fhtoffset : Return an optimal offset for `fht`.
Notes
-----
This function computes a discrete version of the Hankel transform
.. math::
A(k) = \int_{0}^{\infty} \! a(r) \, J_\mu(kr) \, k \, dr \;,
where :math:`J_\mu` is the Bessel function of order :math:`\mu`. The index
:math:`\mu` may be any real number, positive or negative.
The input array `a` is a periodic sequence of length :math:`n`, uniformly
logarithmically spaced with spacing `dln`,
.. math::
a_j = a(r_j) \;, \quad
r_j = r_c \exp[(j-j_c) \, \mathtt{dln}]
centred about the point :math:`r_c`. Note that the central index
:math:`j_c = (n+1)/2` is half-integral if :math:`n` is even, so that
:math:`r_c` falls between two input elements. Similarly, the output
array `A` is a periodic sequence of length :math:`n`, also uniformly
logarithmically spaced with spacing `dln`
.. math::
A_j = A(k_j) \;, \quad
k_j = k_c \exp[(j-j_c) \, \mathtt{dln}]
centred about the point :math:`k_c`.
The centre points :math:`r_c` and :math:`k_c` of the periodic intervals may
be chosen arbitrarily, but it would be usual to choose the product
:math:`k_c r_c = k_j r_{n-1-j} = k_{n-1-j} r_j` to be unity. This can be
changed using the `offset` parameter, which controls the logarithmic offset
:math:`\log(k_c) = \mathtt{offset} - \log(r_c)` of the output array.
Choosing an optimal value for `offset` may reduce ringing of the discrete
Hankel transform.
If the `bias` parameter is nonzero, this function computes a discrete
version of the biased Hankel transform
.. math::
A(k) = \int_{0}^{\infty} \! a_q(r) \, (kr)^q \, J_\mu(kr) \, k \, dr
where :math:`q` is the value of `bias`, and a power law bias
:math:`a_q(r) = a(r) \, (kr)^{-q}` is applied to the input sequence.
Biasing the transform can help approximate the continuous transform of
:math:`a(r)` if there is a value :math:`q` such that :math:`a_q(r)` is
close to a periodic sequence, in which case the resulting :math:`A(k)` will
be close to the continuous transform.
References
----------
.. [1] Talman J. D., 1978, J. Comp. Phys., 29, 35
.. [2] Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191)
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :