Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Module « scipy.fft »
Signature de la fonction dst
def dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, orthogonalize=None)
Description
help(scipy.fft.dst)
Return the Discrete Sine Transform of arbitrary type sequence x.
Parameters
----------
x : array_like
The input array.
type : {1, 2, 3, 4}, optional
Type of the DST (see Notes). Default type is 2.
n : int, optional
Length of the transform. If ``n < x.shape[axis]``, `x` is
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
default results in ``n = x.shape[axis]``.
axis : int, optional
Axis along which the dst is computed; the default is over the
last axis (i.e., ``axis=-1``).
norm : {"backward", "ortho", "forward"}, optional
Normalization mode (see Notes). Default is "backward".
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
workers : int, optional
Maximum number of workers to use for parallel computation. If negative,
the value wraps around from ``os.cpu_count()``.
See :func:`~scipy.fft.fft` for more details.
orthogonalize : bool, optional
Whether to use the orthogonalized DST variant (see Notes).
Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
.. versionadded:: 1.8.0
Returns
-------
dst : ndarray of reals
The transformed input array.
See Also
--------
idst : Inverse DST
Notes
-----
.. warning:: For ``type in {2, 3}``, ``norm="ortho"`` breaks the direct
correspondence with the direct Fourier transform. To recover
it you must specify ``orthogonalize=False``.
For ``norm="ortho"`` both the `dst` and `idst` are scaled by the same
overall factor in both directions. By default, the transform is also
orthogonalized which for types 2 and 3 means the transform definition is
modified to give orthogonality of the DST matrix (see below).
For ``norm="backward"``, there is no scaling on the `dst` and the `idst` is
scaled by ``1/N`` where ``N`` is the "logical" size of the DST.
There are, theoretically, 8 types of the DST for different combinations of
even/odd boundary conditions and boundary off sets [1]_, only the first
4 types are implemented in SciPy.
**Type I**
There are several definitions of the DST-I; we use the following for
``norm="backward"``. DST-I assumes the input is odd around :math:`n=-1` and
:math:`n=N`.
.. math::
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(n+1)}{N+1}\right)
Note that the DST-I is only supported for input size > 1.
The (unnormalized) DST-I is its own inverse, up to a factor :math:`2(N+1)`.
The orthonormalized DST-I is exactly its own inverse.
``orthogonalize`` has no effect here, as the DST-I matrix is already
orthogonal up to a scale factor of ``2N``.
**Type II**
There are several definitions of the DST-II; we use the following for
``norm="backward"``. DST-II assumes the input is odd around :math:`n=-1/2` and
:math:`n=N-1/2`; the output is odd around :math:`k=-1` and even around :math:`k=N-1`
.. math::
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(2n+1)}{2N}\right)
If ``orthogonalize=True``, ``y[-1]`` is divided :math:`\sqrt{2}` which, when
combined with ``norm="ortho"``, makes the corresponding matrix of
coefficients orthonormal (``O @ O.T = np.eye(N)``).
**Type III**
There are several definitions of the DST-III, we use the following (for
``norm="backward"``). DST-III assumes the input is odd around :math:`n=-1` and
even around :math:`n=N-1`
.. math::
y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin\left(
\frac{\pi(2k+1)(n+1)}{2N}\right)
If ``orthogonalize=True``, ``x[-1]`` is multiplied by :math:`\sqrt{2}`
which, when combined with ``norm="ortho"``, makes the corresponding matrix
of coefficients orthonormal (``O @ O.T = np.eye(N)``).
The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up
to a factor :math:`2N`. The orthonormalized DST-III is exactly the inverse of the
orthonormalized DST-II.
**Type IV**
There are several definitions of the DST-IV, we use the following (for
``norm="backward"``). DST-IV assumes the input is odd around :math:`n=-0.5` and
even around :math:`n=N-0.5`
.. math::
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(2k+1)(2n+1)}{4N}\right)
``orthogonalize`` has no effect here, as the DST-IV matrix is already
orthogonal up to a scale factor of ``2N``.
The (unnormalized) DST-IV is its own inverse, up to a factor :math:`2N`. The
orthonormalized DST-IV is exactly its own inverse.
References
----------
.. [1] Wikipedia, "Discrete sine transform",
https://en.wikipedia.org/wiki/Discrete_sine_transform
Vous êtes un professionnel et vous avez besoin d'une formation ?
Calcul scientifique
avec Python
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :