Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.fft »

Fonction dst - module scipy.fft

Signature de la fonction dst

def dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False, workers=None) 

Description

dst.__doc__

Return the Discrete Sine Transform of arbitrary type sequence x.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3, 4}, optional
        Type of the DST (see Notes). Default type is 2.
    n : int, optional
        Length of the transform. If ``n < x.shape[axis]``, `x` is
        truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
        default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the dst is computed; the default is over the
        last axis (i.e., ``axis=-1``).
    norm : {"backward", "ortho", "forward"}, optional
        Normalization mode (see Notes). Default is "backward".
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.
    workers : int, optional
        Maximum number of workers to use for parallel computation. If negative,
        the value wraps around from ``os.cpu_count()``.
        See :func:`~scipy.fft.fft` for more details.

    Returns
    -------
    dst : ndarray of reals
        The transformed input array.

    See Also
    --------
    idst : Inverse DST

    Notes
    -----
    For a single dimension array ``x``.

    For ``norm="backward"``, there is no scaling on the `dst` and the `idst` is
    scaled by ``1/N`` where ``N`` is the "logical" size of the DST. For
    ``norm='ortho'`` both directions are scaled by the same factor
    ``1/sqrt(N)``.

    There are, theoretically, 8 types of the DST for different combinations of
    even/odd boundary conditions and boundary off sets [1]_, only the first
    4 types are implemented in SciPy.

    **Type I**

    There are several definitions of the DST-I; we use the following for
    ``norm="backward"``. DST-I assumes the input is odd around :math:`n=-1` and
    :math:`n=N`.

    .. math::

        y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(n+1)}{N+1}\right)

    Note that the DST-I is only supported for input size > 1.
    The (unnormalized) DST-I is its own inverse, up to a factor :math:`2(N+1)`.
    The orthonormalized DST-I is exactly its own inverse.

    **Type II**

    There are several definitions of the DST-II; we use the following for
    ``norm="backward"``. DST-II assumes the input is odd around :math:`n=-1/2` and
    :math:`n=N-1/2`; the output is odd around :math:`k=-1` and even around :math:`k=N-1`

    .. math::

        y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(2n+1)}{2N}\right)

    if ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``

    .. math::

        f = \begin{cases}
        \sqrt{\frac{1}{4N}} & \text{if }k = 0, \\
        \sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}

    **Type III**

    There are several definitions of the DST-III, we use the following (for
    ``norm="backward"``). DST-III assumes the input is odd around :math:`n=-1` and
    even around :math:`n=N-1`

    .. math::

        y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin\left(
        \frac{\pi(2k+1)(n+1)}{2N}\right)

    The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up
    to a factor :math:`2N`. The orthonormalized DST-III is exactly the inverse of the
    orthonormalized DST-II.

    **Type IV**

    There are several definitions of the DST-IV, we use the following (for
    ``norm="backward"``). DST-IV assumes the input is odd around :math:`n=-0.5` and
    even around :math:`n=N-0.5`

    .. math::

        y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(2k+1)(2n+1)}{4N}\right)

    The (unnormalized) DST-IV is its own inverse, up to a factor :math:`2N`. The
    orthonormalized DST-IV is exactly its own inverse.

    References
    ----------
    .. [1] Wikipedia, "Discrete sine transform",
           https://en.wikipedia.org/wiki/Discrete_sine_transform