Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.fft »

Fonction irfft - module scipy.fft

Signature de la fonction irfft

def irfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *, plan=None) 

Description

irfft.__doc__

    Computes the inverse of `rfft`.

    This function computes the inverse of the 1-D *n*-point
    discrete Fourier Transform of real input computed by `rfft`.
    In other words, ``irfft(rfft(x), len(x)) == x`` to within numerical
    accuracy. (See Notes below for why ``len(a)`` is necessary here.)

    The input is expected to be in the form returned by `rfft`, i.e., the
    real zero-frequency term followed by the complex positive frequency terms
    in order of increasing frequency. Since the discrete Fourier Transform of
    real input is Hermitian-symmetric, the negative frequency terms are taken
    to be the complex conjugates of the corresponding positive frequency terms.

    Parameters
    ----------
    x : array_like
        The input array.
    n : int, optional
        Length of the transformed axis of the output.
        For `n` output points, ``n//2+1`` input points are necessary. If the
        input is longer than this, it is cropped. If it is shorter than this,
        it is padded with zeros. If `n` is not given, it is taken to be
        ``2*(m-1)``, where ``m`` is the length of the input along the axis
        specified by `axis`.
    axis : int, optional
        Axis over which to compute the inverse FFT. If not given, the last
        axis is used.
    norm : {"backward", "ortho", "forward"}, optional
        Normalization mode (see `fft`). Default is "backward".
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.
        See :func:`fft` for more details.
    workers : int, optional
        Maximum number of workers to use for parallel computation. If negative,
        the value wraps around from ``os.cpu_count()``.
        See :func:`~scipy.fft.fft` for more details.
    plan : object, optional
        This argument is reserved for passing in a precomputed plan provided
        by downstream FFT vendors. It is currently not used in SciPy.

        .. versionadded:: 1.5.0

    Returns
    -------
    out : ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.
        The length of the transformed axis is `n`, or, if `n` is not given,
        ``2*(m-1)`` where ``m`` is the length of the transformed axis of the
        input. To get an odd number of output points, `n` must be specified.

    Raises
    ------
    IndexError
        If `axis` is larger than the last axis of `x`.

    See Also
    --------
    rfft : The 1-D FFT of real input, of which `irfft` is inverse.
    fft : The 1-D FFT.
    irfft2 : The inverse of the 2-D FFT of real input.
    irfftn : The inverse of the N-D FFT of real input.

    Notes
    -----
    Returns the real valued `n`-point inverse discrete Fourier transform
    of `x`, where `x` contains the non-negative frequency terms of a
    Hermitian-symmetric sequence. `n` is the length of the result, not the
    input.

    If you specify an `n` such that `a` must be zero-padded or truncated, the
    extra/removed values will be added/removed at high frequencies. One can
    thus resample a series to `m` points via Fourier interpolation by:
    ``a_resamp = irfft(rfft(a), m)``.

    The default value of `n` assumes an even output length. By the Hermitian
    symmetry, the last imaginary component must be 0 and so is ignored. To
    avoid losing information, the correct length of the real input *must* be
    given.

    Examples
    --------
    >>> import scipy.fft
    >>> scipy.fft.ifft([1, -1j, -1, 1j])
    array([0.+0.j,  1.+0.j,  0.+0.j,  0.+0.j]) # may vary
    >>> scipy.fft.irfft([1, -1j, -1])
    array([0.,  1.,  0.,  0.])

    Notice how the last term in the input to the ordinary `ifft` is the
    complex conjugate of the second term, and the output has zero imaginary
    part everywhere. When calling `irfft`, the negative frequencies are not
    specified, and the output array is purely real.