Module « scipy.fft »
Signature de la fonction irfft
def irfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *, plan=None)
Description
irfft.__doc__
Computes the inverse of `rfft`.
This function computes the inverse of the 1-D *n*-point
discrete Fourier Transform of real input computed by `rfft`.
In other words, ``irfft(rfft(x), len(x)) == x`` to within numerical
accuracy. (See Notes below for why ``len(a)`` is necessary here.)
The input is expected to be in the form returned by `rfft`, i.e., the
real zero-frequency term followed by the complex positive frequency terms
in order of increasing frequency. Since the discrete Fourier Transform of
real input is Hermitian-symmetric, the negative frequency terms are taken
to be the complex conjugates of the corresponding positive frequency terms.
Parameters
----------
x : array_like
The input array.
n : int, optional
Length of the transformed axis of the output.
For `n` output points, ``n//2+1`` input points are necessary. If the
input is longer than this, it is cropped. If it is shorter than this,
it is padded with zeros. If `n` is not given, it is taken to be
``2*(m-1)``, where ``m`` is the length of the input along the axis
specified by `axis`.
axis : int, optional
Axis over which to compute the inverse FFT. If not given, the last
axis is used.
norm : {"backward", "ortho", "forward"}, optional
Normalization mode (see `fft`). Default is "backward".
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
See :func:`fft` for more details.
workers : int, optional
Maximum number of workers to use for parallel computation. If negative,
the value wraps around from ``os.cpu_count()``.
See :func:`~scipy.fft.fft` for more details.
plan : object, optional
This argument is reserved for passing in a precomputed plan provided
by downstream FFT vendors. It is currently not used in SciPy.
.. versionadded:: 1.5.0
Returns
-------
out : ndarray
The truncated or zero-padded input, transformed along the axis
indicated by `axis`, or the last one if `axis` is not specified.
The length of the transformed axis is `n`, or, if `n` is not given,
``2*(m-1)`` where ``m`` is the length of the transformed axis of the
input. To get an odd number of output points, `n` must be specified.
Raises
------
IndexError
If `axis` is larger than the last axis of `x`.
See Also
--------
rfft : The 1-D FFT of real input, of which `irfft` is inverse.
fft : The 1-D FFT.
irfft2 : The inverse of the 2-D FFT of real input.
irfftn : The inverse of the N-D FFT of real input.
Notes
-----
Returns the real valued `n`-point inverse discrete Fourier transform
of `x`, where `x` contains the non-negative frequency terms of a
Hermitian-symmetric sequence. `n` is the length of the result, not the
input.
If you specify an `n` such that `a` must be zero-padded or truncated, the
extra/removed values will be added/removed at high frequencies. One can
thus resample a series to `m` points via Fourier interpolation by:
``a_resamp = irfft(rfft(a), m)``.
The default value of `n` assumes an even output length. By the Hermitian
symmetry, the last imaginary component must be 0 and so is ignored. To
avoid losing information, the correct length of the real input *must* be
given.
Examples
--------
>>> import scipy.fft
>>> scipy.fft.ifft([1, -1j, -1, 1j])
array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) # may vary
>>> scipy.fft.irfft([1, -1j, -1])
array([0., 1., 0., 0.])
Notice how the last term in the input to the ordinary `ifft` is the
complex conjugate of the second term, and the output has zero imaginary
part everywhere. When calling `irfft`, the negative frequencies are not
specified, and the output array is purely real.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :