Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « matplotlib.pyplot »

Fonction subplots - module matplotlib.pyplot

Signature de la fonction subplots

def subplots(nrows=1, ncols=1, *, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw) 

Description

subplots.__doc__

    Create a figure and a set of subplots.

    This utility wrapper makes it convenient to create common layouts of
    subplots, including the enclosing figure object, in a single call.

    Parameters
    ----------
    nrows, ncols : int, default: 1
        Number of rows/columns of the subplot grid.

    sharex, sharey : bool or {'none', 'all', 'row', 'col'}, default: False
        Controls sharing of properties among x (*sharex*) or y (*sharey*)
        axes:

        - True or 'all': x- or y-axis will be shared among all subplots.
        - False or 'none': each subplot x- or y-axis will be independent.
        - 'row': each subplot row will share an x- or y-axis.
        - 'col': each subplot column will share an x- or y-axis.

        When subplots have a shared x-axis along a column, only the x tick
        labels of the bottom subplot are created. Similarly, when subplots
        have a shared y-axis along a row, only the y tick labels of the first
        column subplot are created. To later turn other subplots' ticklabels
        on, use `~matplotlib.axes.Axes.tick_params`.

        When subplots have a shared axis that has units, calling
        `~matplotlib.axis.Axis.set_units` will update each axis with the
        new units.

    squeeze : bool, default: True
        - If True, extra dimensions are squeezed out from the returned
          array of `~matplotlib.axes.Axes`:

          - if only one subplot is constructed (nrows=ncols=1), the
            resulting single Axes object is returned as a scalar.
          - for Nx1 or 1xM subplots, the returned object is a 1D numpy
            object array of Axes objects.
          - for NxM, subplots with N>1 and M>1 are returned as a 2D array.

        - If False, no squeezing at all is done: the returned Axes object is
          always a 2D array containing Axes instances, even if it ends up
          being 1x1.

    subplot_kw : dict, optional
        Dict with keywords passed to the
        `~matplotlib.figure.Figure.add_subplot` call used to create each
        subplot.

    gridspec_kw : dict, optional
        Dict with keywords passed to the `~matplotlib.gridspec.GridSpec`
        constructor used to create the grid the subplots are placed on.

    **fig_kw
        All additional keyword arguments are passed to the
        `.pyplot.figure` call.

    Returns
    -------
    fig : `~.figure.Figure`

    ax : `.axes.Axes` or array of Axes
        *ax* can be either a single `~matplotlib.axes.Axes` object or an
        array of Axes objects if more than one subplot was created.  The
        dimensions of the resulting array can be controlled with the squeeze
        keyword, see above.

        Typical idioms for handling the return value are::

            # using the variable ax for single a Axes
            fig, ax = plt.subplots()

            # using the variable axs for multiple Axes
            fig, axs = plt.subplots(2, 2)

            # using tuple unpacking for multiple Axes
            fig, (ax1, ax2) = plt.subplots(1, 2)
            fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)

        The names ``ax`` and pluralized ``axs`` are preferred over ``axes``
        because for the latter it's not clear if it refers to a single
        `~.axes.Axes` instance or a collection of these.

    See Also
    --------
    .pyplot.figure
    .pyplot.subplot
    .pyplot.axes
    .Figure.subplots
    .Figure.add_subplot

    Examples
    --------
    ::

        # First create some toy data:
        x = np.linspace(0, 2*np.pi, 400)
        y = np.sin(x**2)

        # Create just a figure and only one subplot
        fig, ax = plt.subplots()
        ax.plot(x, y)
        ax.set_title('Simple plot')

        # Create two subplots and unpack the output array immediately
        f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
        ax1.plot(x, y)
        ax1.set_title('Sharing Y axis')
        ax2.scatter(x, y)

        # Create four polar axes and access them through the returned array
        fig, axs = plt.subplots(2, 2, subplot_kw=dict(projection="polar"))
        axs[0, 0].plot(x, y)
        axs[1, 1].scatter(x, y)

        # Share a X axis with each column of subplots
        plt.subplots(2, 2, sharex='col')

        # Share a Y axis with each row of subplots
        plt.subplots(2, 2, sharey='row')

        # Share both X and Y axes with all subplots
        plt.subplots(2, 2, sharex='all', sharey='all')

        # Note that this is the same as
        plt.subplots(2, 2, sharex=True, sharey=True)

        # Create figure number 10 with a single subplot
        # and clears it if it already exists.
        fig, ax = plt.subplots(num=10, clear=True)