Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé
Module « matplotlib.pyplot »

Fonction pcolormesh - module matplotlib.pyplot

Signature de la fonction pcolormesh

def pcolormesh(*args: 'ArrayLike', alpha: 'float | None' = None, norm: 'str | Normalize | None' = None, cmap: 'str | Colormap | None' = None, vmin: 'float | None' = None, vmax: 'float | None' = None, colorizer: 'Colorizer | None' = None, shading: "Literal['flat', 'nearest', 'gouraud', 'auto'] | None" = None, antialiased: 'bool' = False, data=None, **kwargs) -> 'QuadMesh' 

Description

help(matplotlib.pyplot.pcolormesh)

Create a pseudocolor plot with a non-regular rectangular grid.

Call signature::

    pcolormesh([X, Y,] C, /, **kwargs)

*X* and *Y* can be used to specify the corners of the quadrilaterals.

The arguments *X*, *Y*, *C* are positional-only.

.. hint::

   `~.Axes.pcolormesh` is similar to `~.Axes.pcolor`. It is much faster
   and preferred in most cases. For a detailed discussion on the
   differences see :ref:`Differences between pcolor() and pcolormesh()
   <differences-pcolor-pcolormesh>`.

Parameters
----------
C : array-like
    The mesh data. Supported array shapes are:

    - (M, N) or M*N: a mesh with scalar data. The values are mapped to
      colors using normalization and a colormap. See parameters *norm*,
      *cmap*, *vmin*, *vmax*.
    - (M, N, 3): an image with RGB values (0-1 float or 0-255 int).
    - (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),
      i.e. including transparency.

    The first two dimensions (M, N) define the rows and columns of
    the mesh data.

X, Y : array-like, optional
    The coordinates of the corners of quadrilaterals of a pcolormesh::

        (X[i+1, j], Y[i+1, j])       (X[i+1, j+1], Y[i+1, j+1])
                              ●╶───╴●
                              │     │
                              ●╶───╴●
            (X[i, j], Y[i, j])       (X[i, j+1], Y[i, j+1])

    Note that the column index corresponds to the x-coordinate, and
    the row index corresponds to y. For details, see the
    :ref:`Notes <axes-pcolormesh-grid-orientation>` section below.

    If ``shading='flat'`` the dimensions of *X* and *Y* should be one
    greater than those of *C*, and the quadrilateral is colored due
    to the value at ``C[i, j]``.  If *X*, *Y* and *C* have equal
    dimensions, a warning will be raised and the last row and column
    of *C* will be ignored.

    If ``shading='nearest'`` or ``'gouraud'``, the dimensions of *X*
    and *Y* should be the same as those of *C* (if not, a ValueError
    will be raised).  For ``'nearest'`` the color ``C[i, j]`` is
    centered on ``(X[i, j], Y[i, j])``.  For ``'gouraud'``, a smooth
    interpolation is carried out between the quadrilateral corners.

    If *X* and/or *Y* are 1-D arrays or column vectors they will be
    expanded as needed into the appropriate 2D arrays, making a
    rectangular grid.

cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
    The Colormap instance or registered colormap name used to map scalar data
    to colors.

norm : str or `~matplotlib.colors.Normalize`, optional
    The normalization method used to scale scalar data to the [0, 1] range
    before mapping to colors using *cmap*. By default, a linear scaling is
    used, mapping the lowest value to 0 and the highest to 1.

    If given, this can be one of the following:

    - An instance of `.Normalize` or one of its subclasses
      (see :ref:`colormapnorms`).
    - A scale name, i.e. one of "linear", "log", "symlog", "logit", etc.  For a
      list of available scales, call `matplotlib.scale.get_scale_names()`.
      In that case, a suitable `.Normalize` subclass is dynamically generated
      and instantiated.

vmin, vmax : float, optional
    When using scalar data and no explicit *norm*, *vmin* and *vmax* define
    the data range that the colormap covers. By default, the colormap covers
    the complete value range of the supplied data. It is an error to use
    *vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
    name together with *vmin*/*vmax* is acceptable).

colorizer : `~matplotlib.colorizer.Colorizer` or None, default: None
    The Colorizer object used to map color to data. If None, a Colorizer
    object is created from a *norm* and *cmap*.

edgecolors : {'none', None, 'face', color, color sequence}, optional
    The color of the edges. Defaults to 'none'. Possible values:

    - 'none' or '': No edge.
    - *None*: :rc:`patch.edgecolor` will be used. Note that currently
      :rc:`patch.force_edgecolor` has to be True for this to work.
    - 'face': Use the adjacent face color.
    - A color or sequence of colors will set the edge color.

    The singular form *edgecolor* works as an alias.

alpha : float, default: None
    The alpha blending value, between 0 (transparent) and 1 (opaque).

shading : {'flat', 'nearest', 'gouraud', 'auto'}, optional
    The fill style for the quadrilateral; defaults to
    :rc:`pcolor.shading`. Possible values:

    - 'flat': A solid color is used for each quad. The color of the
      quad (i, j), (i+1, j), (i, j+1), (i+1, j+1) is given by
      ``C[i, j]``. The dimensions of *X* and *Y* should be
      one greater than those of *C*; if they are the same as *C*,
      then a deprecation warning is raised, and the last row
      and column of *C* are dropped.
    - 'nearest': Each grid point will have a color centered on it,
      extending halfway between the adjacent grid centers.  The
      dimensions of *X* and *Y* must be the same as *C*.
    - 'gouraud': Each quad will be Gouraud shaded: The color of the
      corners (i', j') are given by ``C[i', j']``. The color values of
      the area in between is interpolated from the corner values.
      The dimensions of *X* and *Y* must be the same as *C*. When
      Gouraud shading is used, *edgecolors* is ignored.
    - 'auto': Choose 'flat' if dimensions of *X* and *Y* are one
      larger than *C*.  Choose 'nearest' if dimensions are the same.

    See :doc:`/gallery/images_contours_and_fields/pcolormesh_grids`
    for more description.

snap : bool, default: False
    Whether to snap the mesh to pixel boundaries.

rasterized : bool, optional
    Rasterize the pcolormesh when drawing vector graphics.  This can
    speed up rendering and produce smaller files for large data sets.
    See also :doc:`/gallery/misc/rasterization_demo`.

Returns
-------
`matplotlib.collections.QuadMesh`

Other Parameters
----------------
data : indexable object, optional
    If given, all parameters also accept a string ``s``, which is
    interpreted as ``data[s]`` if ``s`` is a key in ``data``.

**kwargs
    Additionally, the following arguments are allowed. They are passed
    along to the `~matplotlib.collections.QuadMesh` constructor:

Properties:
    agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
    alpha: array-like or scalar or None
    animated: bool
    antialiased or aa or antialiaseds: bool or list of bools
    array: array-like
    capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
    clim: (vmin: float, vmax: float)
    clip_box: `~matplotlib.transforms.BboxBase` or None
    clip_on: bool
    clip_path: Patch or (Path, Transform) or None
    cmap: `.Colormap` or str or None
    color: :mpltype:`color` or list of RGBA tuples
    edgecolor or ec or edgecolors: :mpltype:`color` or list of :mpltype:`color` or 'face'
    facecolor or facecolors or fc: :mpltype:`color` or list of :mpltype:`color`
    figure: `~matplotlib.figure.Figure` or `~matplotlib.figure.SubFigure`
    gid: str
    hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
    hatch_linewidth: unknown
    in_layout: bool
    joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
    label: object
    linestyle or dashes or linestyles or ls: str or tuple or list thereof
    linewidth or linewidths or lw: float or list of floats
    mouseover: bool
    norm: `.Normalize` or str or None
    offset_transform or transOffset: `.Transform`
    offsets: (N, 2) or (2,) array-like
    path_effects: list of `.AbstractPathEffect`
    picker: None or bool or float or callable
    pickradius: float
    rasterized: bool
    sketch_params: (scale: float, length: float, randomness: float)
    snap: bool or None
    transform: `~matplotlib.transforms.Transform`
    url: str
    urls: list of str or None
    visible: bool
    zorder: float

See Also
--------
pcolor : An alternative implementation with slightly different
    features. For a detailed discussion on the differences see
    :ref:`Differences between pcolor() and pcolormesh()
    <differences-pcolor-pcolormesh>`.
imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a
    faster alternative.

Notes
-----

.. note::

    This is the :ref:`pyplot wrapper <pyplot_interface>` for `.axes.Axes.pcolormesh`.

**Masked arrays**

*C* may be a masked array. If ``C[i, j]`` is masked, the corresponding
quadrilateral will be transparent. Masking of *X* and *Y* is not
supported. Use `~.Axes.pcolor` if you need this functionality.

.. _axes-pcolormesh-grid-orientation:

**Grid orientation**

The grid orientation follows the standard matrix convention: An array
*C* with shape (nrows, ncolumns) is plotted with the column number as
*X* and the row number as *Y*.

.. _differences-pcolor-pcolormesh:

**Differences between pcolor() and pcolormesh()**

Both methods are used to create a pseudocolor plot of a 2D array
using quadrilaterals.

The main difference lies in the created object and internal data
handling:
While `~.Axes.pcolor` returns a `.PolyQuadMesh`, `~.Axes.pcolormesh`
returns a `.QuadMesh`. The latter is more specialized for the given
purpose and thus is faster. It should almost always be preferred.

There is also a slight difference in the handling of masked arrays.
Both `~.Axes.pcolor` and `~.Axes.pcolormesh` support masked arrays
for *C*. However, only `~.Axes.pcolor` supports masked arrays for *X*
and *Y*. The reason lies in the internal handling of the masked values.
`~.Axes.pcolor` leaves out the respective polygons from the
PolyQuadMesh. `~.Axes.pcolormesh` sets the facecolor of the masked
elements to transparent. You can see the difference when using
edgecolors. While all edges are drawn irrespective of masking in a
QuadMesh, the edge between two adjacent masked quadrilaterals in
`~.Axes.pcolor` is not drawn as the corresponding polygons do not
exist in the PolyQuadMesh. Because PolyQuadMesh draws each individual
polygon, it also supports applying hatches and linestyles to the collection.

Another difference is the support of Gouraud shading in
`~.Axes.pcolormesh`, which is not available with `~.Axes.pcolor`.


Vous êtes un professionnel et vous avez besoin d'une formation ? Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé