Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Module « scipy.sparse.csgraph »
Signature de la fonction yen
def yen(csgraph, source, sink, K, *, directed=True, return_predecessors=False, unweighted=False)
Description
help(scipy.sparse.csgraph.yen)
yen(csgraph, source, sink, K, *, directed=True, return_predecessors=False,
unweighted=False)
Yen's K-Shortest Paths algorithm on a directed or undirected graph.
.. versionadded:: 1.14.0
Parameters
----------
csgraph : array_like, or sparse array or matrix, 2 dimensions
The N x N array of distances representing the input graph.
source : int
The index of the starting node for the paths.
sink : int
The index of the ending node for the paths.
K : int
The number of shortest paths to find.
directed : bool, optional
If ``True`` (default), then find the shortest path on a directed graph:
only move from point ``i`` to point ``j`` along paths ``csgraph[i, j]``.
If False, then find the shortest path on an undirected graph: the
algorithm can progress from point i to j along ``csgraph[i, j]`` or
``csgraph[j, i]``.
return_predecessors : bool, optional
If ``True``, return the size ``(M, N)`` predecessor matrix. Default: ``False``.
unweighted : bool, optional
If ``True``, then find unweighted distances. That is, rather than finding
the path between each point such that the sum of weights is minimized,
find the path such that the number of edges is minimized. Default: ``False``.
Returns
-------
dist_array : ndarray
Array of size ``M`` of shortest distances between the source and sink nodes.
``dist_array[i]`` gives the i-th shortest distance from the source to the sink
along the graph. ``M`` is the number of shortest paths found, which is less than or
equal to `K`.
predecessors : ndarray
Returned only if ``return_predecessors == True``.
The M x N matrix of predecessors, which can be used to reconstruct
the shortest paths.
``M`` is the number of shortest paths found, which is less than or equal to `K`.
Row ``i`` of the predecessor matrix contains
information on the ``i``-th shortest path from the source to the sink: each
entry ``predecessors[i, j]`` gives the index of the previous node in the
path from the source to node ``j``. If the path does not pass via node ``j``,
then ``predecessors[i, j] = -9999``.
Raises
------
NegativeCycleError:
If there are negative cycles in the graph
Notes
-----
Yen's algorithm is a graph search algorithm that finds single-source `K`-shortest
loopless paths for a graph with nonnegative edge cost. The algorithm was published
by Jin Y. Yen in 1971 and employs any shortest path algorithm to find the best path,
then proceeds to find ``K - 1`` deviations of the best path.
The algorithm is based on Dijsktra's algorithm for finding each shortest path.
In case there are negative edges in the graph, Johnson's algorithm is applied.
If multiple valid solutions are possible, output may vary with SciPy and
Python version.
References
----------
.. [1] https://en.wikipedia.org/wiki/Yen%27s_algorithm
.. [2] https://www.ams.org/journals/qam/1970-27-04/S0033-569X-1970-0253822-7/
Examples
--------
>>> from scipy.sparse import csr_array
>>> from scipy.sparse.csgraph import yen
>>> graph = [
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_array(graph)
>>> print(graph)
<Compressed Sparse Row sparse array of dtype 'int64'
with 5 stored elements and shape (4, 4)>
Coords Values
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3
>>> dist_array, predecessors = yen(csgraph=graph, source=0, sink=3, K=2,
... directed=False, return_predecessors=True)
>>> dist_array
array([2., 5.])
>>> predecessors
array([[-9999, 0, -9999, 1],
[-9999, -9999, 0, 2]], dtype=int32)
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :