Module « scipy.sparse.csgraph »
Signature de la fonction bellman_ford
Description
bellman_ford.__doc__
bellman_ford(csgraph, directed=True, indices=None, return_predecessors=False,
unweighted=False)
Compute the shortest path lengths using the Bellman-Ford algorithm.
The Bellman-Ford algorithm can robustly deal with graphs with negative
weights. If a negative cycle is detected, an error is raised. For
graphs without negative edge weights, Dijkstra's algorithm may be faster.
.. versionadded:: 0.11.0
Parameters
----------
csgraph : array, matrix, or sparse matrix, 2 dimensions
The N x N array of distances representing the input graph.
directed : bool, optional
If True (default), then find the shortest path on a directed graph:
only move from point i to point j along paths csgraph[i, j].
If False, then find the shortest path on an undirected graph: the
algorithm can progress from point i to j along csgraph[i, j] or
csgraph[j, i]
indices : array_like or int, optional
if specified, only compute the paths from the points at the given
indices.
return_predecessors : bool, optional
If True, return the size (N, N) predecesor matrix
unweighted : bool, optional
If True, then find unweighted distances. That is, rather than finding
the path between each point such that the sum of weights is minimized,
find the path such that the number of edges is minimized.
Returns
-------
dist_matrix : ndarray
The N x N matrix of distances between graph nodes. dist_matrix[i,j]
gives the shortest distance from point i to point j along the graph.
predecessors : ndarray
Returned only if return_predecessors == True.
The N x N matrix of predecessors, which can be used to reconstruct
the shortest paths. Row i of the predecessor matrix contains
information on the shortest paths from point i: each entry
predecessors[i, j] gives the index of the previous node in the
path from point i to point j. If no path exists between point
i and j, then predecessors[i, j] = -9999
Raises
------
NegativeCycleError:
if there are negative cycles in the graph
Notes
-----
This routine is specially designed for graphs with negative edge weights.
If all edge weights are positive, then Dijkstra's algorithm is a better
choice.
Examples
--------
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import bellman_ford
>>> graph = [
... [0, 1 ,2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3
>>> dist_matrix, predecessors = bellman_ford(csgraph=graph, directed=False, indices=0, return_predecessors=True)
>>> dist_matrix
array([ 0., 1., 2., 2.])
>>> predecessors
array([-9999, 0, 0, 1], dtype=int32)
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :