Vous êtes un professionnel et vous avez besoin d'une formation ?
Calcul scientifique
avec Python
Voir le programme détaillé
Module « scipy.sparse.csgraph »
Signature de la fonction shortest_path
def shortest_path(csgraph, method='auto', directed=True, return_predecessors=False, unweighted=False, overwrite=False, indices=None)
Description
help(scipy.sparse.csgraph.shortest_path)
shortest_path(csgraph, method='auto', directed=True, return_predecessors=False,
unweighted=False, overwrite=False, indices=None)
Perform a shortest-path graph search on a positive directed or
undirected graph.
.. versionadded:: 0.11.0
Parameters
----------
csgraph : array_like, or sparse array or matrix, 2 dimensions
The N x N array of distances representing the input graph.
method : string ['auto'|'FW'|'D'], optional
Algorithm to use for shortest paths. Options are:
'auto' -- (default) select the best among 'FW', 'D', 'BF', or 'J'
based on the input data.
'FW' -- Floyd-Warshall algorithm.
Computational cost is approximately ``O[N^3]``.
The input csgraph will be converted to a dense representation.
'D' -- Dijkstra's algorithm with Fibonacci heaps.
Computational cost is approximately ``O[N(N*k + N*log(N))]``,
where ``k`` is the average number of connected edges per node.
The input csgraph will be converted to a csr representation.
'BF' -- Bellman-Ford algorithm.
This algorithm can be used when weights are negative.
If a negative cycle is encountered, an error will be raised.
Computational cost is approximately ``O[N(N^2 k)]``, where
``k`` is the average number of connected edges per node.
The input csgraph will be converted to a csr representation.
'J' -- Johnson's algorithm.
Like the Bellman-Ford algorithm, Johnson's algorithm is
designed for use when the weights are negative. It combines
the Bellman-Ford algorithm with Dijkstra's algorithm for
faster computation.
directed : bool, optional
If True (default), then find the shortest path on a directed graph:
only move from point i to point j along paths csgraph[i, j].
If False, then find the shortest path on an undirected graph: the
algorithm can progress from point i to j along csgraph[i, j] or
csgraph[j, i]
return_predecessors : bool, optional
If True, return the size (N, N) predecessor matrix.
unweighted : bool, optional
If True, then find unweighted distances. That is, rather than finding
the path between each point such that the sum of weights is minimized,
find the path such that the number of edges is minimized.
overwrite : bool, optional
If True, overwrite csgraph with the result. This applies only if
method == 'FW' and csgraph is a dense, c-ordered array with
dtype=float64.
indices : array_like or int, optional
If specified, only compute the paths from the points at the given
indices. Incompatible with method == 'FW'.
Returns
-------
dist_matrix : ndarray
The N x N matrix of distances between graph nodes. dist_matrix[i,j]
gives the shortest distance from point i to point j along the graph.
predecessors : ndarray
Returned only if return_predecessors == True.
The N x N matrix of predecessors, which can be used to reconstruct
the shortest paths. Row i of the predecessor matrix contains
information on the shortest paths from point i: each entry
predecessors[i, j] gives the index of the previous node in the
path from point i to point j. If no path exists between point
i and j, then predecessors[i, j] = -9999
Raises
------
NegativeCycleError:
if there are negative cycles in the graph
Notes
-----
As currently implemented, Dijkstra's algorithm and Johnson's algorithm
do not work for graphs with direction-dependent distances when
directed == False. i.e., if csgraph[i,j] and csgraph[j,i] are non-equal
edges, method='D' may yield an incorrect result.
If multiple valid solutions are possible, output may vary with SciPy and
Python version.
Examples
--------
>>> from scipy.sparse import csr_array
>>> from scipy.sparse.csgraph import shortest_path
>>> graph = [
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_array(graph)
>>> print(graph)
<Compressed Sparse Row sparse array of dtype 'int64'
with 5 stored elements and shape (4, 4)>
Coords Values
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3
>>> dist_matrix, predecessors = shortest_path(csgraph=graph, directed=False, indices=0, return_predecessors=True)
>>> dist_matrix
array([0., 1., 2., 2.])
>>> predecessors
array([-9999, 0, 0, 1], dtype=int32)
Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :