Vous êtes un professionnel et vous avez besoin d'une formation ?
Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Module « scipy.sparse.csgraph »
Signature de la fonction reconstruct_path
def reconstruct_path(csgraph, predecessors, directed=True)
Description
help(scipy.sparse.csgraph.reconstruct_path)
reconstruct_path(csgraph, predecessors, directed=True)
Construct a tree from a graph and a predecessor list.
.. versionadded:: 0.11.0
Parameters
----------
csgraph : array_like or sparse array or matrix
The N x N matrix representing the directed or undirected graph
from which the predecessors are drawn.
predecessors : array_like, one dimension
The length-N array of indices of predecessors for the tree. The
index of the parent of node i is given by predecessors[i].
directed : bool, optional
If True (default), then operate on a directed graph: only move from
point i to point j along paths csgraph[i, j].
If False, then operate on an undirected graph: the algorithm can
progress from point i to j along csgraph[i, j] or csgraph[j, i].
Returns
-------
cstree : csr matrix
The N x N directed compressed-sparse representation of the tree drawn
from csgraph which is encoded by the predecessor list.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csr_array
>>> from scipy.sparse.csgraph import reconstruct_path
>>> graph = [
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_array(graph)
>>> print(graph)
<Compressed Sparse Row sparse array of dtype 'int64'
with 4 stored elements and shape (4, 4)>
Coords Values
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 3) 3
>>> pred = np.array([-9999, 0, 0, 1], dtype=np.int32)
>>> cstree = reconstruct_path(csgraph=graph, predecessors=pred, directed=False)
>>> cstree.todense()
array([[0., 1., 2., 0.],
[0., 0., 0., 1.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :