Module « scipy.sparse.csgraph »
Signature de la fonction laplacian
def laplacian(csgraph, normed=False, return_diag=False, use_out_degree=False)
Description
laplacian.__doc__
Return the Laplacian matrix of a directed graph.
Parameters
----------
csgraph : array_like or sparse matrix, 2 dimensions
compressed-sparse graph, with shape (N, N).
normed : bool, optional
If True, then compute symmetric normalized Laplacian.
return_diag : bool, optional
If True, then also return an array related to vertex degrees.
use_out_degree : bool, optional
If True, then use out-degree instead of in-degree.
This distinction matters only if the graph is asymmetric.
Default: False.
Returns
-------
lap : ndarray or sparse matrix
The N x N laplacian matrix of csgraph. It will be a NumPy array (dense)
if the input was dense, or a sparse matrix otherwise.
diag : ndarray, optional
The length-N diagonal of the Laplacian matrix.
For the normalized Laplacian, this is the array of square roots
of vertex degrees or 1 if the degree is zero.
Notes
-----
The Laplacian matrix of a graph is sometimes referred to as the
"Kirchoff matrix" or the "admittance matrix", and is useful in many
parts of spectral graph theory. In particular, the eigen-decomposition
of the laplacian matrix can give insight into many properties of the graph.
Examples
--------
>>> from scipy.sparse import csgraph
>>> G = np.arange(5) * np.arange(5)[:, np.newaxis]
>>> G
array([[ 0, 0, 0, 0, 0],
[ 0, 1, 2, 3, 4],
[ 0, 2, 4, 6, 8],
[ 0, 3, 6, 9, 12],
[ 0, 4, 8, 12, 16]])
>>> csgraph.laplacian(G, normed=False)
array([[ 0, 0, 0, 0, 0],
[ 0, 9, -2, -3, -4],
[ 0, -2, 16, -6, -8],
[ 0, -3, -6, 21, -12],
[ 0, -4, -8, -12, 24]])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :