Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Module « scipy.sparse.csgraph »
Signature de la fonction floyd_warshall
def floyd_warshall(csgraph, directed=True, return_predecessors=False, unweighted=False, overwrite=False)
Description
help(scipy.sparse.csgraph.floyd_warshall)
floyd_warshall(csgraph, directed=True, return_predecessors=False,
unweighted=False, overwrite=False)
Compute the shortest path lengths using the Floyd-Warshall algorithm
.. versionadded:: 0.11.0
Parameters
----------
csgraph : array_like, or sparse array or matrix, 2 dimensions
The N x N array of distances representing the input graph.
directed : bool, optional
If True (default), then find the shortest path on a directed graph:
only move from point i to point j along paths csgraph[i, j].
If False, then find the shortest path on an undirected graph: the
algorithm can progress from point i to j along csgraph[i, j] or
csgraph[j, i]
return_predecessors : bool, optional
If True, return the size (N, N) predecessor matrix.
unweighted : bool, optional
If True, then find unweighted distances. That is, rather than finding
the path between each point such that the sum of weights is minimized,
find the path such that the number of edges is minimized.
overwrite : bool, optional
If True, overwrite csgraph with the result. This applies only if
csgraph is a dense, c-ordered array with dtype=float64.
Returns
-------
dist_matrix : ndarray
The N x N matrix of distances between graph nodes. dist_matrix[i,j]
gives the shortest distance from point i to point j along the graph.
predecessors : ndarray
Returned only if return_predecessors == True.
The N x N matrix of predecessors, which can be used to reconstruct
the shortest paths. Row i of the predecessor matrix contains
information on the shortest paths from point i: each entry
predecessors[i, j] gives the index of the previous node in the
path from point i to point j. If no path exists between point
i and j, then predecessors[i, j] = -9999
Raises
------
NegativeCycleError:
if there are negative cycles in the graph
Notes
-----
If multiple valid solutions are possible, output may vary with SciPy and
Python version.
Examples
--------
>>> from scipy.sparse import csr_array
>>> from scipy.sparse.csgraph import floyd_warshall
>>> graph = [
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_array(graph)
>>> print(graph)
<Compressed Sparse Row sparse array of dtype 'int64'
with 5 stored elements and shape (4, 4)>
Coords Values
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3
>>> dist_matrix, predecessors = floyd_warshall(csgraph=graph, directed=False, return_predecessors=True)
>>> dist_matrix
array([[0., 1., 2., 2.],
[1., 0., 3., 1.],
[2., 3., 0., 3.],
[2., 1., 3., 0.]])
>>> predecessors
array([[-9999, 0, 0, 1],
[ 1, -9999, 0, 1],
[ 2, 0, -9999, 2],
[ 1, 3, 3, -9999]], dtype=int32)
Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :