Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Module « scipy.sparse.csgraph »
Signature de la fonction structural_rank
def structural_rank(graph)
Description
help(scipy.sparse.csgraph.structural_rank)
structural_rank(graph)
Compute the structural rank of a graph (matrix) with a given
sparsity pattern.
The structural rank of a matrix is the number of entries in the maximum
transversal of the corresponding bipartite graph, and is an upper bound
on the numerical rank of the matrix. A graph has full structural rank
if it is possible to permute the elements to make the diagonal zero-free.
.. versionadded:: 0.19.0
Parameters
----------
graph : sparse array or matrix
Input sparse array.
Returns
-------
rank : int
The structural rank of the sparse graph.
References
----------
.. [1] I. S. Duff, "Computing the Structural Index", SIAM J. Alg. Disc.
Meth., Vol. 7, 594 (1986).
.. [2] http://www.cise.ufl.edu/research/sparse/matrices/legend.html
Examples
--------
>>> from scipy.sparse import csr_array
>>> from scipy.sparse.csgraph import structural_rank
>>> graph = [
... [0, 1, 2, 0],
... [1, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 1, 3, 0]
... ]
>>> graph = csr_array(graph)
>>> print(graph)
<Compressed Sparse Row sparse array of dtype 'int64'
with 8 stored elements and shape (4, 4)>
Coords Values
(0, 1) 1
(0, 2) 2
(1, 0) 1
(1, 3) 1
(2, 0) 2
(2, 3) 3
(3, 1) 1
(3, 2) 3
>>> structural_rank(graph)
4
Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :