Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.sparse.csgraph »
Signature de la fonction dijkstra
def dijkstra(csgraph, directed=True, indices=None, return_predecessors=False, unweighted=False, limit=inf, min_only=False)
Description
help(scipy.sparse.csgraph.dijkstra)
dijkstra(csgraph, directed=True, indices=None, return_predecessors=False,
unweighted=False, limit=np.inf, min_only=False)
Dijkstra algorithm using Fibonacci Heaps
.. versionadded:: 0.11.0
Parameters
----------
csgraph : array_like, or sparse array or matrix, 2 dimensions
The N x N array of non-negative distances representing the input graph.
directed : bool, optional
If True (default), then find the shortest path on a directed graph:
only move from point i to point j along paths csgraph[i, j] and from
point j to i along paths csgraph[j, i].
If False, then find the shortest path on an undirected graph: the
algorithm can progress from point i to j or j to i along either
csgraph[i, j] or csgraph[j, i].
.. warning:: Refer the notes below while using with ``directed=False``.
indices : array_like or int, optional
if specified, only compute the paths from the points at the given
indices.
return_predecessors : bool, optional
If True, return the size (N, N) predecessor matrix.
unweighted : bool, optional
If True, then find unweighted distances. That is, rather than finding
the path between each point such that the sum of weights is minimized,
find the path such that the number of edges is minimized.
limit : float, optional
The maximum distance to calculate, must be >= 0. Using a smaller limit
will decrease computation time by aborting calculations between pairs
that are separated by a distance > limit. For such pairs, the distance
will be equal to np.inf (i.e., not connected).
.. versionadded:: 0.14.0
min_only : bool, optional
If False (default), for every node in the graph, find the shortest path
from every node in indices.
If True, for every node in the graph, find the shortest path from any
of the nodes in indices (which can be substantially faster).
.. versionadded:: 1.3.0
Returns
-------
dist_matrix : ndarray, shape ([n_indices, ]n_nodes,)
The matrix of distances between graph nodes. If min_only=False,
dist_matrix has shape (n_indices, n_nodes) and dist_matrix[i, j]
gives the shortest distance from point i to point j along the graph.
If min_only=True, dist_matrix has shape (n_nodes,) and contains for
a given node the shortest path to that node from any of the nodes
in indices.
predecessors : ndarray, shape ([n_indices, ]n_nodes,)
If min_only=False, this has shape (n_indices, n_nodes),
otherwise it has shape (n_nodes,).
Returned only if return_predecessors == True.
The matrix of predecessors, which can be used to reconstruct
the shortest paths. Row i of the predecessor matrix contains
information on the shortest paths from point i: each entry
predecessors[i, j] gives the index of the previous node in the
path from point i to point j. If no path exists between point
i and j, then predecessors[i, j] = -9999
sources : ndarray, shape (n_nodes,)
Returned only if min_only=True and return_predecessors=True.
Contains the index of the source which had the shortest path
to each target. If no path exists within the limit,
this will contain -9999. The value at the indices passed
will be equal to that index (i.e. the fastest way to reach
node i, is to start on node i).
Notes
-----
As currently implemented, Dijkstra's algorithm does not work for
graphs with direction-dependent distances when directed == False.
i.e., if csgraph[i,j] and csgraph[j,i] are not equal and
both are nonzero, setting directed=False will not yield the correct
result.
Also, this routine does not work for graphs with negative
distances. Negative distances can lead to infinite cycles that must
be handled by specialized algorithms such as Bellman-Ford's algorithm
or Johnson's algorithm.
If multiple valid solutions are possible, output may vary with SciPy and
Python version.
Examples
--------
>>> from scipy.sparse import csr_array
>>> from scipy.sparse.csgraph import dijkstra
>>> graph = [
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_array(graph)
>>> print(graph)
<Compressed Sparse Row sparse array of dtype 'int64'
with 4 stored elements and shape (4, 4)>
Coords Values
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 3) 3
>>> dist_matrix, predecessors = dijkstra(csgraph=graph, directed=False, indices=0, return_predecessors=True)
>>> dist_matrix
array([0., 1., 2., 2.])
>>> predecessors
array([-9999, 0, 0, 1], dtype=int32)
Vous êtes un professionnel et vous avez besoin d'une formation ?
Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :