Module « scipy.sparse.csgraph »
Signature de la fonction minimum_spanning_tree
Description
minimum_spanning_tree.__doc__
minimum_spanning_tree(csgraph, overwrite=False)
Return a minimum spanning tree of an undirected graph
A minimum spanning tree is a graph consisting of the subset of edges
which together connect all connected nodes, while minimizing the total
sum of weights on the edges. This is computed using the Kruskal algorithm.
.. versionadded:: 0.11.0
Parameters
----------
csgraph : array_like or sparse matrix, 2 dimensions
The N x N matrix representing an undirected graph over N nodes
(see notes below).
overwrite : bool, optional
if true, then parts of the input graph will be overwritten for
efficiency.
Returns
-------
span_tree : csr matrix
The N x N compressed-sparse representation of the undirected minimum
spanning tree over the input (see notes below).
Notes
-----
This routine uses undirected graphs as input and output. That is, if
graph[i, j] and graph[j, i] are both zero, then nodes i and j do not
have an edge connecting them. If either is nonzero, then the two are
connected by the minimum nonzero value of the two.
This routine loses precision when users input a dense matrix.
Small elements < 1E-8 of the dense matrix are rounded to zero.
All users should input sparse matrices if possible to avoid it.
Examples
--------
The following example shows the computation of a minimum spanning tree
over a simple four-component graph::
input graph minimum spanning tree
(0) (0)
/ \ /
3 8 3
/ \ /
(3)---5---(1) (3)---5---(1)
\ / /
6 2 2
\ / /
(2) (2)
It is easy to see from inspection that the minimum spanning tree involves
removing the edges with weights 8 and 6. In compressed sparse
representation, the solution looks like this:
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import minimum_spanning_tree
>>> X = csr_matrix([[0, 8, 0, 3],
... [0, 0, 2, 5],
... [0, 0, 0, 6],
... [0, 0, 0, 0]])
>>> Tcsr = minimum_spanning_tree(X)
>>> Tcsr.toarray().astype(int)
array([[0, 0, 0, 3],
[0, 0, 2, 5],
[0, 0, 0, 0],
[0, 0, 0, 0]])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :