Vous êtes un professionnel et vous avez besoin d'une formation ?
		Calcul scientifique
avec Python
		Voir le programme détaillé	
	
	
    
            Classe « Series »
            
            
Signature de la méthode  to_timestamp 
def to_timestamp(self, freq: 'Frequency | None' = None, how: "Literal['s', 'e', 'start', 'end']" = 'start', copy: 'bool | None' = None) -> 'Series' 
Description
help(Series.to_timestamp)
Cast to DatetimeIndex of Timestamps, at *beginning* of period.
Parameters
----------
freq : str, default frequency of PeriodIndex
    Desired frequency.
how : {'s', 'e', 'start', 'end'}
    Convention for converting period to timestamp; start of period
    vs. end.
copy : bool, default True
    Whether or not to return a copy.
    .. note::
        The `copy` keyword will change behavior in pandas 3.0.
        `Copy-on-Write
        <https://pandas.pydata.org/docs/dev/user_guide/copy_on_write.html>`__
        will be enabled by default, which means that all methods with a
        `copy` keyword will use a lazy copy mechanism to defer the copy and
        ignore the `copy` keyword. The `copy` keyword will be removed in a
        future version of pandas.
        You can already get the future behavior and improvements through
        enabling copy on write ``pd.options.mode.copy_on_write = True``
Returns
-------
Series with DatetimeIndex
Examples
--------
>>> idx = pd.PeriodIndex(['2023', '2024', '2025'], freq='Y')
>>> s1 = pd.Series([1, 2, 3], index=idx)
>>> s1
2023    1
2024    2
2025    3
Freq: Y-DEC, dtype: int64
The resulting frequency of the Timestamps is `YearBegin`
>>> s1 = s1.to_timestamp()
>>> s1
2023-01-01    1
2024-01-01    2
2025-01-01    3
Freq: YS-JAN, dtype: int64
Using `freq` which is the offset that the Timestamps will have
>>> s2 = pd.Series([1, 2, 3], index=idx)
>>> s2 = s2.to_timestamp(freq='M')
>>> s2
2023-01-31    1
2024-01-31    2
2025-01-31    3
Freq: YE-JAN, dtype: int64
                      
            
	
	
	
	
		Vous êtes un professionnel et vous avez besoin d'une formation ?
		Machine Learning
avec Scikit-Learn
		Voir le programme détaillé	
	
	
             
            
            
            
         
        
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :