Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « Series »

Méthode pandas.Series.idxmin

Signature de la méthode idxmin

def idxmin(self, axis=0, skipna=True, *args, **kwargs) 

Description

idxmin.__doc__

        Return the row label of the minimum value.

        If multiple values equal the minimum, the first row label with that
        value is returned.

        Parameters
        ----------
        axis : int, default 0
            For compatibility with DataFrame.idxmin. Redundant for application
            on Series.
        skipna : bool, default True
            Exclude NA/null values. If the entire Series is NA, the result
            will be NA.
        *args, **kwargs
            Additional arguments and keywords have no effect but might be
            accepted for compatibility with NumPy.

        Returns
        -------
        Index
            Label of the minimum value.

        Raises
        ------
        ValueError
            If the Series is empty.

        See Also
        --------
        numpy.argmin : Return indices of the minimum values
            along the given axis.
        DataFrame.idxmin : Return index of first occurrence of minimum
            over requested axis.
        Series.idxmax : Return index *label* of the first occurrence
            of maximum of values.

        Notes
        -----
        This method is the Series version of ``ndarray.argmin``. This method
        returns the label of the minimum, while ``ndarray.argmin`` returns
        the position. To get the position, use ``series.values.argmin()``.

        Examples
        --------
        >>> s = pd.Series(data=[1, None, 4, 1],
        ...               index=['A', 'B', 'C', 'D'])
        >>> s
        A    1.0
        B    NaN
        C    4.0
        D    1.0
        dtype: float64

        >>> s.idxmin()
        'A'

        If `skipna` is False and there is an NA value in the data,
        the function returns ``nan``.

        >>> s.idxmin(skipna=False)
        nan