Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « Series »

Méthode pandas.Series.memory_usage

Signature de la méthode memory_usage

def memory_usage(self, index=True, deep=False) 

Description

memory_usage.__doc__

        Return the memory usage of the Series.

        The memory usage can optionally include the contribution of
        the index and of elements of `object` dtype.

        Parameters
        ----------
        index : bool, default True
            Specifies whether to include the memory usage of the Series index.
        deep : bool, default False
            If True, introspect the data deeply by interrogating
            `object` dtypes for system-level memory consumption, and include
            it in the returned value.

        Returns
        -------
        int
            Bytes of memory consumed.

        See Also
        --------
        numpy.ndarray.nbytes : Total bytes consumed by the elements of the
            array.
        DataFrame.memory_usage : Bytes consumed by a DataFrame.

        Examples
        --------
        >>> s = pd.Series(range(3))
        >>> s.memory_usage()
        152

        Not including the index gives the size of the rest of the data, which
        is necessarily smaller:

        >>> s.memory_usage(index=False)
        24

        The memory footprint of `object` values is ignored by default:

        >>> s = pd.Series(["a", "b"])
        >>> s.values
        array(['a', 'b'], dtype=object)
        >>> s.memory_usage()
        144
        >>> s.memory_usage(deep=True)
        244