Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « Series »

Méthode pandas.Series.explode

Signature de la méthode explode

def explode(self, ignore_index: bool = False) -> 'Series' 

Description

explode.__doc__

        Transform each element of a list-like to a row.

        .. versionadded:: 0.25.0

        Parameters
        ----------
        ignore_index : bool, default False
            If True, the resulting index will be labeled 0, 1, ..., n - 1.

            .. versionadded:: 1.1.0

        Returns
        -------
        Series
            Exploded lists to rows; index will be duplicated for these rows.

        See Also
        --------
        Series.str.split : Split string values on specified separator.
        Series.unstack : Unstack, a.k.a. pivot, Series with MultiIndex
            to produce DataFrame.
        DataFrame.melt : Unpivot a DataFrame from wide format to long format.
        DataFrame.explode : Explode a DataFrame from list-like
            columns to long format.

        Notes
        -----
        This routine will explode list-likes including lists, tuples, sets,
        Series, and np.ndarray. The result dtype of the subset rows will
        be object. Scalars will be returned unchanged, and empty list-likes will
        result in a np.nan for that row. In addition, the ordering of elements in
        the output will be non-deterministic when exploding sets.

        Examples
        --------
        >>> s = pd.Series([[1, 2, 3], 'foo', [], [3, 4]])
        >>> s
        0    [1, 2, 3]
        1          foo
        2           []
        3       [3, 4]
        dtype: object

        >>> s.explode()
        0      1
        0      2
        0      3
        1    foo
        2    NaN
        3      3
        3      4
        dtype: object