Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Classe « Series »
Signature de la méthode aggregate
def aggregate(self, func=None, axis: 'Axis' = 0, *args, **kwargs)
Description
help(Series.aggregate)
Aggregate using one or more operations over the specified axis.
Parameters
----------
func : function, str, list or dict
Function to use for aggregating the data. If a function, must either
work when passed a Series or when passed to Series.apply.
Accepted combinations are:
- function
- string function name
- list of functions and/or function names, e.g. ``[np.sum, 'mean']``
- dict of axis labels -> functions, function names or list of such.
axis : {0 or 'index'}
Unused. Parameter needed for compatibility with DataFrame.
*args
Positional arguments to pass to `func`.
**kwargs
Keyword arguments to pass to `func`.
Returns
-------
scalar, Series or DataFrame
The return can be:
* scalar : when Series.agg is called with single function
* Series : when DataFrame.agg is called with a single function
* DataFrame : when DataFrame.agg is called with several functions
See Also
--------
Series.apply : Invoke function on a Series.
Series.transform : Transform function producing a Series with like indexes.
Notes
-----
The aggregation operations are always performed over an axis, either the
index (default) or the column axis. This behavior is different from
`numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`,
`var`), where the default is to compute the aggregation of the flattened
array, e.g., ``numpy.mean(arr_2d)`` as opposed to
``numpy.mean(arr_2d, axis=0)``.
`agg` is an alias for `aggregate`. Use the alias.
Functions that mutate the passed object can produce unexpected
behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
for more details.
A passed user-defined-function will be passed a Series for evaluation.
Examples
--------
>>> s = pd.Series([1, 2, 3, 4])
>>> s
0 1
1 2
2 3
3 4
dtype: int64
>>> s.agg('min')
1
>>> s.agg(['min', 'max'])
min 1
max 4
dtype: int64
Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :