Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « Series »

Méthode pandas.Series.map

Signature de la méthode map

def map(self, arg, na_action=None) -> 'Series' 

Description

map.__doc__

        Map values of Series according to input correspondence.

        Used for substituting each value in a Series with another value,
        that may be derived from a function, a ``dict`` or
        a :class:`Series`.

        Parameters
        ----------
        arg : function, collections.abc.Mapping subclass or Series
            Mapping correspondence.
        na_action : {None, 'ignore'}, default None
            If 'ignore', propagate NaN values, without passing them to the
            mapping correspondence.

        Returns
        -------
        Series
            Same index as caller.

        See Also
        --------
        Series.apply : For applying more complex functions on a Series.
        DataFrame.apply : Apply a function row-/column-wise.
        DataFrame.applymap : Apply a function elementwise on a whole DataFrame.

        Notes
        -----
        When ``arg`` is a dictionary, values in Series that are not in the
        dictionary (as keys) are converted to ``NaN``. However, if the
        dictionary is a ``dict`` subclass that defines ``__missing__`` (i.e.
        provides a method for default values), then this default is used
        rather than ``NaN``.

        Examples
        --------
        >>> s = pd.Series(['cat', 'dog', np.nan, 'rabbit'])
        >>> s
        0      cat
        1      dog
        2      NaN
        3   rabbit
        dtype: object

        ``map`` accepts a ``dict`` or a ``Series``. Values that are not found
        in the ``dict`` are converted to ``NaN``, unless the dict has a default
        value (e.g. ``defaultdict``):

        >>> s.map({'cat': 'kitten', 'dog': 'puppy'})
        0   kitten
        1    puppy
        2      NaN
        3      NaN
        dtype: object

        It also accepts a function:

        >>> s.map('I am a {}'.format)
        0       I am a cat
        1       I am a dog
        2       I am a nan
        3    I am a rabbit
        dtype: object

        To avoid applying the function to missing values (and keep them as
        ``NaN``) ``na_action='ignore'`` can be used:

        >>> s.map('I am a {}'.format, na_action='ignore')
        0     I am a cat
        1     I am a dog
        2            NaN
        3  I am a rabbit
        dtype: object