Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « Series »

Méthode pandas.Series.take

Signature de la méthode take

def take(self, indices, axis=0, is_copy=None, **kwargs) -> 'Series' 

Description

take.__doc__

Return the elements in the given *positional* indices along an axis.

This means that we are not indexing according to actual values in
the index attribute of the object. We are indexing according to the
actual position of the element in the object.

Parameters
----------
indices : array-like
    An array of ints indicating which positions to take.
axis : {0 or 'index', 1 or 'columns', None}, default 0
    The axis on which to select elements. ``0`` means that we are
    selecting rows, ``1`` means that we are selecting columns.
is_copy : bool
    Before pandas 1.0, ``is_copy=False`` can be specified to ensure
    that the return value is an actual copy. Starting with pandas 1.0,
    ``take`` always returns a copy, and the keyword is therefore
    deprecated.

    .. deprecated:: 1.0.0
**kwargs
    For compatibility with :meth:`numpy.take`. Has no effect on the
    output.

Returns
-------
taken : same type as caller
    An array-like containing the elements taken from the object.

See Also
--------
DataFrame.loc : Select a subset of a DataFrame by labels.
DataFrame.iloc : Select a subset of a DataFrame by positions.
numpy.take : Take elements from an array along an axis.

Examples
--------
>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
...                    ('parrot', 'bird', 24.0),
...                    ('lion', 'mammal', 80.5),
...                    ('monkey', 'mammal', np.nan)],
...                   columns=['name', 'class', 'max_speed'],
...                   index=[0, 2, 3, 1])
>>> df
     name   class  max_speed
0  falcon    bird      389.0
2  parrot    bird       24.0
3    lion  mammal       80.5
1  monkey  mammal        NaN

Take elements at positions 0 and 3 along the axis 0 (default).

Note how the actual indices selected (0 and 1) do not correspond to
our selected indices 0 and 3. That's because we are selecting the 0th
and 3rd rows, not rows whose indices equal 0 and 3.

>>> df.take([0, 3])
     name   class  max_speed
0  falcon    bird      389.0
1  monkey  mammal        NaN

Take elements at indices 1 and 2 along the axis 1 (column selection).

>>> df.take([1, 2], axis=1)
    class  max_speed
0    bird      389.0
2    bird       24.0
3  mammal       80.5
1  mammal        NaN

We may take elements using negative integers for positive indices,
starting from the end of the object, just like with Python lists.

>>> df.take([-1, -2])
     name   class  max_speed
1  monkey  mammal        NaN
3    lion  mammal       80.5